E B R & % ¥

Test—Driven Development

A Practical Guide

ML 3K BT %
J:fﬁ fis /i

% Elhi)

[2] David Astels %
Ron Jeffries FF

A Practical Cromde

\
1
|
|
|
|

N\

PRENTICE
HALL

PTR

software
deveLopment
14th annual |

product
excellence
award
KEFEE :
EERXRESE

(REFE) &

B AR FLRIEE: OFE,. 7R, K3 =
1/ Java # JUnit AHKAEZR N L FF IR EIRTE =

$t%f C++. C#/NET. VB6. Python ¢ TDDEZE =
HEEFEX TDD BHBHALZARMIMBELZE =

@mvemw@a

www.infopower.com.cn

R M R R ® W

Test—Driven Development
A Practical Guide

BRI IR
S G

(R EAR)

Eﬂ'fﬁa@ﬁi.%u

ower.com.

e ey L A N T e T Y VR W I, - TR Ty

Test-Driven Development: A Practical Guide (ISBN 0-13-101649-0)

David Astels

Copyright © 2004 Prentice Hall PTR.

Original English Language Edition Published by Prentice Hall PTR.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC POWER PRESS,
Copyright © 2004.

A HE K Pearson Education #FA R E B AT EEN (B, B IENITBRE S S
XA MFEHIR, KT
FEHREPEE, AEUENFRXEHEDERABREFTES.

A3 EH Pearson Education B AR, TIREEANEHE.

EHTHRARREERERE LS BT 01-2004-2538

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

R T ARICEERN (R EEFE, WIRITEEAGEEBhX) #ERIT.

BHEmEmE (CIP) ¥iE

WREEE R : SSRRR / (B MWRRETE. —REA. by TEBEIHKE, 2004
(FRRREFEID

ISBN 7-5083-2193-6

.. I3 NLEM4AR—HL IV.TP311.52

h ERAE B CIP BT (2004) 2 028277 5

MNP & FERRRE RS

¥ & WA k. SCHIEE GEERD

£ ZE: (3) David Astels

TR Bk

AR RAT: R AR
bk JERETW RS HRESmAS: 100044
Hif: (010) 88515918 f& H. (010) 88518169

=) + ALRTFESRENRI

H : 787x1092 1/16 P 7K: 36.5

+H : ISBN 7-5083-2193-6

W R 200445 AEREE 1R 2004 5 A& 1 IREDRI

E

it

dan x =

#r: 58.00 &
WETE BENDLR

To my parents who,
though they may not have always
approved or understood,
let me try.

FOREWORD

My responsibility in writing this foreword is to help you decide whether to read
this book. If you are interested in improving your programs and your program-
ming skill, this book can help you.

Test-Driven Development is a practice that can make your programs better.
If you're like me, using the techniques in Dave’s book, you will find that your
programs are more clear, that they come into being more easily, and that you'll
have fewer defects than you used to.

I'm not saying that TDD is some kind of magic potion; quite the contrary.
TDD isn’t magic, it is something that you yourself do. By focusing attention
on tests first, you’ll be designing your program more from the viewpoint of the
user. By doing the tests one at a time, you’ll be creating a simple design that’s
focused exactly on the problem. As you work up all these little tests, you’ll drive
out most of the defects that otherwise slip into your code. Finally, by saving the
tests, you make the program easier to maintain and improve as time goes on.

Dave’s book is full of examples of Test-Driven Development. There’s an ex-
tended example to show you how TDD works over a longer haul. There are small
examples showing how to use most of the TDD-related tools that are avajlable.
There are even examples in most of the languages where TDD is used, though
the book’s main focus is on examples in Java. This is a book about practice,
with real examples rather than dry theory.

But wait! There’s more! Dave also gives a good introduction to refactoring,
and to programming by intention. And he introduces Mock Objects, an advanced
and powerful technique in testing and Test-Driven Development. Plus, he has a
section on one of the tricky areas in TDD, creating GUIs in test-first fashion.

You’ll also find a quick and valuable summary of eXtreme Programming, a
look at Agile Modeling, and a comprehensive list of online resources relating to
all the book’s topics.

All these things are good and serve as reasons to buy this book. The core
value of Dave’s book, the real meat, is in the code. Test-Driven Development is
a technique that we use as we program. No matter what design or modeling we
have done before we begin programming, TDD helps us make the code better.
I'm sure that it will help you, if you’ll give this book, and what it teaches, a
chance.

Xi

Xii Foreword

Test-Driven Development has made my programs better, and those of many
other programmers as well. It’s a technique that is worth adding to your bag
of tricks. This book will help you improve as a programmer. That’s why I’'m
recommending it.

Ron Jeffries

www. XProgramming.com
Pinckney, Michigan

18 December 2002

PREFACE

This isn’t a book about testing.

This is a book about a way of programming that leads to simple, clear, robust
code. Code that is easy to design, write, read, understand, extend, and maintain.

This is a book about thinking, designing, communicating, and programming.
It’s just a really nice side effect that we end up with a comprehensive! suite of
tests.

This book explores Test-Driven Development, Test-First Programming, call
it what you will: programming by writing the tests first, then writing the code
needed to make the tests pass. Specifically, working in the smallest steps possible:
write just enough of a test to fail, write just enough code to make it pass, refactor
to clean up the mess you made getting the test to pass.

This book focuses on the Java programming language and uses Java exam-
ples throughout. It is assumed that the reader has at least an intermediate
understanding of Java (and a working Java system if you want to try out the
examples for yourself). Example code and other support material is available at
my website[URL 54].

Even though the focus is on Java, Part IV looks at other prominent members
of the xUnit family for several popular languages. This is done by taking the first
task from Chapter 10 and recasting it in the various languages. This provides a
good comparison of the different frameworks.

EXTREME PROGRAMMING

Test-Driven Development is a core part of the agile process formalized by Kent
Beck called eXtreme Programming (XP). XP is probably the most agile of the ag-
ile processes, being extremely low overhead, and extremely low ceremony. How-
ever, it is extremely high discipline, very effective, and incredibly resilient to
change.

That being said, you do not need to adopt XP in order to practice TDD and
gain the benefit from it. TDD is worth doing on its own. The quality of your
code will improve. Of course, if you are doing XP it’s well worth it to get really
good at TDD.

1How comprehensive depends on how good we become at it.

Xill

XV Preface

TDD is one of the main design tools that we have in XP.?2 As I mentioned
earlier, the fact that we end up with a set of tests is a very pleasant by-product.
Because we have those tests, we can have confidence we haven’t inadvertently
broken anything if the tests ran successfully before the change and after it. Con-
versely, if a test fails after we make a change we know exactly what broke and
are in the best position to find the problem and fix it. The only thing that could
have caused the failure was the change we made since the last time the tests ran
clean.

All this means is that because the tests are there, we can safely use another
of the XP practices: refactoring. As we will see in Chapter 2, refactoring is the
process of making changes to the structure of code without changing its external
behavior. The tests let you confirm that you haven’t changed the behavior. This
gives you the courage necessary to make (sometimes drastic) changes to working
code. The result is that the code is cleaner, more extensible, more maintainable,
and more understandable.

Appendix A talks a bit more about eXtreme Programming. For more ex-
haustive information, you can browse the bibliography and explore the online
XP resources listed in Appendix C.

WHO SHOULD READ THIS BOOK?

Should you read this book? Helping you answer that question is why I wrote this
preface. There was once an informal survey on the XP Yahoo Group as to the
purpose that a preface should serve. The general opinion was that by reading
the preface you should get a good idea of whether you should buy and read the
book. I hope I've done a good job of it!

Read this book if you want to adopt eXtreme Programming. As stated earlier,
being able to do TDD well is worth the time and effort it takes to get good at
it. TDD is at the heart of XP, so doing TDD well makes the entire process that
much more effective.

Read this book if you want to write code that is clearer, more robust, easier
to extend, and as slim (as opposed to bloated) as possible.

Read this book if you know there must be a better way than spending weeks
or months drawing pictures before writing a line of code.

Finally, read this book if you want to know how to make programming fun
again.

In terms of what you should know before reading this book, it would help if you
had at least an intermediate understanding of Java. Having a good background
in another OO language or two (such as Smalltalk, C++, Python, or Ruby) will,
however, enable you to get even more out of this book.

As this book goes to print there is one other TDD book available[9] (although
I'm sure many will follow). 1 was aware of that book being written as 1 wrote
much of this one, and it was always a partial goal to be complementary to it.
From it you will get the philosophy and metaphysics of TDD, mixed with enough

2The other is refactoring.

Preface

pragmatics to make it real. If you are so inclined, I encourage you to read it first.
The book you hold in your hands is, as the title says, a practical guide to doing
TDD. It’s focused on one language (not the best language, but arguably one that
is very popular and well supported for TDD), and presents not only concepts and
principles, but tools and techniques.

THE STRUCTURE OF THIS BOOK
This book is divided into four parts:

I Background In Part I we examine some topics that relate to the main body
of material in the book (i.e., TDD in Java). We start with an introduction
to TDD. This is followed by chapters on refactoring and programming by
intention. These two techniques are also prominent in XP and are required
and enabled by TDD.

II Tools and Techniques In Part II we take an in-depth look at various tools
that are useful for practicing TDD with Java, and how to use them. We
start with a tutorial introduction to JUnit, the defacto standard Java TDD
framework. We continue by exploring some of the standard (i.e., included
in the distribution) and nonstandard extensions to JUnit. Next, we explore
some tools that support the use of JUnit and other tools that are completely
independent of JUnit but work well with it. The final chapters in this part
examine specific techniques or issues and the related tools.

III A Java Project: Test-Driven End to End This is a practical hands-on
book. To that end, Part III (which makes up the bulk of the book) is built
around the development of a real system, not a toy example. We work
through this project test-first. Along the way we draw on material from
the previous parts of the book.

IV xUnit Family Members JUnit is just one member of a large and growing
family of programmer test frameworks. In Part IV we have a look at some
of the other members of the family. We don’t look at all of them, but we
go over several for the more popular languages. So that we get a good
comparison, we go through the same set of stories (i.e., requirements) for
each. Specifically, these are the initial stories from the Java project. This
lets us compare the various members with JUnit as well.

There are also four appendices:

A eXfreme Programming This appendix provides a very brief introduction
to XP.

B Agile Modeling This appendix provides an introduction to and overview of
Agile Modeling.

xvi Preface

C Online Resources Throughout the book I refer to Web sites where you can
find information as well as downloads. This appendix contains a catego-
rized, annotated list of these sites.

D Answers to Exercises Many of the chapters in this book contain exercises
for the reader. This appendix contains all exercises in the book, with an-
swers.

CONVENTIONS USED IN THIS BOOK

I've adopted a handful of visual conventions which I’ve used throughout this book
to make it easier for you, the reader, to differentiate between different sorts of
information.

Source Code This book contains a large amount of source code. When one
of more complete lines of code is being presented, it is indented and set in a
sans-serif font, like this:

public int getAverageRating() {
return totalRating / numberOfRatings;

}

When only part of a line is being presented, it is set in the same font, but
kept in the body of the text. This often includes class names (Movie), methods
(equals()), and constants (true, "a string”, 42).

In general, when a method is referred to parameters are not included, but
empty parentheses are, so that it is obvious that it is a method as opposed to
some other type of identifier, for example: aMethod().

In blocks of code, package and import statements are generally left out.

Filesystem and console I/O Terms relating to the filesystem are set in a serif,
monospaced font. This includes items like filenames (filter.properties) and
commands and their output:

java \

-classpath bin:/usr/local/java/lib/MockMaker.jar \

mockmaker . MockMaker \

com.saorsa. tddbook . samples.mockobjects. IntCalculator \
>src/com/saorsa/tddbook/samples/mockobjects/MockIntCalculator. java

vV V V V &

Tips and Sidebars I've used a couple of different callout mechanisms to highlight
information that is important to take note of, or is interesting but doesn’t fit in
the body of the text for some reason.

#

Throughout the book there are small bits of wisdom that you may find especially useful.
These are set apart the way this paragraph is.
ﬂ

Preface xvii

’

I’ve used sidebars to separate short passages that are not directly related to
the main body of text. Sidebars get placed as IATEX sees fit, usually at the top
of a page. There’s one around here somewhere as an example.

Terminology I learned OO in the context of Smalltalk and I've used Smalltalk
terminology from the beginning. If you're not familiar with Smalltalk, I include
a few terms that I use, and how they map to Java and C++:

instance variable A variable whose scope is an object. Each object has a sep-
arate copy of this variable. (Java: field or member variable, C++: data
member.)

class variable A variable whose scope is a class. All instances of the class share
a single copy of the variable. (Java: static field, C++: static data member.)

method A functional member of a class. (Java: method, C++: member func-
tion.)

sending messages to an object A more abstract way to refer to calling an
object’s methods.

senders Methods that send a specific message, that is, call a specific method
(commonly called references to a method).

ACKNOWLEDGEMENTS

A preface is not complete without acknowledging the other people that make a
book possible. Being an author is like being at the peak of a pyramid. .. you are
being supported (and your work made possible) in various ways by a multitude
of other people. This is my chance to acknowledge and thank them...by name
for the ones I'm aware of.

Kent Beck for making TDD and XP household words—at least in my house-
hold—and for his support of this book.

Miroslav Novak for first turning me on to this new way of programming that
a bunch of smart people were talking about on something called a Wiki. Miroslav
may be my junior in terms of time spent programming, but I’ve learned more
from him than I sometimes care to admit.

Patrick Wilson-Welsh for several things: for always reminding me of the big
picture when I got mired down in the details of the moment; for being the best

xviii Preface

sounding board and copy editor that an author could ask for; and for having the
courage to leave an established life in Washington, D.C. to move to small-town
Canada to become my co-founder and first apprentice.

Dave Thomas of “The Pragmatic Programmers” [URL 53] for letting me use
the IATEX macros he wrote for the book “The Pragmatic Programmer” [25]. That
book was inspiring in its layout and typesetting as well as catalytic in bringing
about a turning point in my thoughts about programming.

Hand in hand with “The Pragmatic Programmer” went “Software Craftsman-
ship”[34] by Pete McBreen. I mean that literally,...I read them back-to-back.
Pete provides a wonderful introduction to and discussion of software as a craft. A
fabulous baok, it was another contributing factor to my career-shaking epiphany
(the third being XP). Thanks, Pete.

Peter Coad, to whom I owe a great debt for taking me under his wing in many
ways and helping me to get this project off the ground. I have to thank him also
for letting me charge ahead with a TDD edition of The Coad Letter[URL 61].

Paul Petralia, my acquisitions editor at Prentice Hall, and the fine crew that
works with him. Thanks for letting us convince you that this book isn’t about
“Testing,” and for believing in it wholeheartedly once we had accomplished that.

Craig Larman must be mentioned here for his encouragement, support, and
advice. I still have great memories of spending a day with Craig at his home
outside Dallas, discussing UML and Together[URL 34] and drinking homemade
Chai.

And a big thanks to Ron Jeffries for writing the foreword for me, as well as
being generally supportive of my XP-related endeavors, specifically (well, what
comes to mind as I write this) this book, and the TDD Coad Letter. Also, for
doing so much to bring XP so far.

Special thanks and a hearty acknowledgement to members of the TDD Yahoo!
group that sent me their JUnit tips: Darren Hobbs, J. B. Rainsberger, and Derek
Weber.

Very special thanks to those that contributed to the book by writing and
letting me use material on subjects that they are the experts in, specifically (in
order of appearance):

Mike Clark for the section on JUnitPerf,

Jens Uwe Pipka for the section on the Daedalos extensions,
Tim Bacon for the section on xmlUnit,

Mike Bowler for the section on the Gargoyle extensions,
Bryan Dollery for the section on IDEA,

James Newkirk for the chapter on NUnit,

Bob Payne for stepping in at the last minute with the chapter on PyUnit,

Preface Xix

Kay Pentecost for the chapter on vbUnit, and

Scott Ambler for the appendix on agile modeling.

Thanks to all the folks in the XP community who gave me feedback (in no
particular order): Kay Pentecost, Edmund Schweppe, Aldo Bergamini, Mike
Clark, Francesco Cirillo, and my friends, colleagues, and past co-authors: Randy
Miller and Miroslav Novak. As with all authors, I'm sure I've missed someone.
Sorry about that.

I need to acknowledge and thank my reviewers as well: Alan Francis and
William Wake.

And yes, as Kent Beck says in the preface of his TDD book[9], it is cliché to
thank our families, but they heartily deserve it. To my wife, Kate, for saying “I'll
clean up the kitchen. You go write.” To my kids, Tasha and Jason, for being
understanding when I had to write, and for thinking that it’s so cool to have a
Dad who writes books. Finally, to my youngest child, Leah, who is too young to
notice what I'm doing but simply smiles when she sees me and gives me a hug
when 1 pick her up.

This book was produced using a variety of open source software All my
computers run Redhat Linux. The manuscript was prepared using GNU Emacs,
and typeset using IATEX. Image manipulation was done with Gimp. The xdvi
previewer was used extensively. The PDF version was created using dvips, and
ps2pdf. Several packages were used with I#TEX, some off the shelf (lgrind, draft-
copy, and fixme), several courtesy of Dave Thomas (for exercises, extended cross
reference support, and url references), and several of my own (chapter heading
quotes, story/task/test management, sidebars, and tips).

Contents

FOREWORD

PREFACE

I

1

Background

TEST-DRIVEN DEVELOPMENT
What Is Test-Driven Development?

Let the Computer Tell You

A Quick Example

Summary

REFACTORING

What Is Refactoring?

When To Refactor

How To Refactor

Some Important Refactorings
Refactoring to Patterns
Summary

PROGRAMMING BY INTENTION
Names

Simplicity

Warranted Assumptions

How To Program by Intention

“No Comment”

Summary

II Tools and Techniques

4 JUNIT

Architectural Overview
The Assertions

xi

xiii

57

61
61
63

vi contents

Writing a TestCase 66
Running Your Tests 68
Using setUp() and tearDown() 71
Using TestSuite 73
How Does It All Fit Together? 74
Where Do Tests Belong? 79
Tips 79
Summary 83
5 JUNIT EXTENSIONS 85
Standard Extensions 85
Adding Missing Asserts with MockObjects 90
Performance and Scalability with JUnitPerf . 90
Daedalos JUnit Extensions 97
Writing XML-Based Tests with xmlUnit 108
Gargoyle Software JUnit Extensions 116
6 JUNIT-RELATED TOOLS 129
Jester 129
NoUnit 136
Clover 139
Eclipse 141
IDEA 143
7 MOCK OBJECTS 145
Mock Objects 145
An TNlustrative Example 146
Uses for Mock Objects 152
Wouldn’t It Be Nice? 154
A Common Example 155
The MockObjects Framework 156
MockMaker 160
EasyMock 163
Summary 168
8 DEVELOPING A GUI TEST-FIRST 171
The Example 171
The AWT Robot 172
Brute Force 172
JFCUnit 178
Jemmy 185
Ultra-Thin GUI ' 190

Summary 198

Contents

Vil

IIT A Java Project: Test-Driven End to End

9 THE PROJECT
Qverview
User Stories and Tasks

10 MOVIE LIST
Make a Movie Container
Make a Movie List GUI
Add a Movie in the GUI
Retrospective

11 MOVIES CAN BE RENAMED
Support Movie Name Editing
Movie Rename GUI
Retrospective

12 MOVIES ARE UNIQUE
Movies Are Unique
Error Message on Non-Uniqueness
Retrospective

13 RATINGS
Add a Single Rating to Movie
Show the Rating in the GUI
Edit the Rating
Retrospective

14 CATEGORIES
Add a Category
Show the Category in the GUI
Add a Selection of Category
Retrospective

15 FILTER ON CATEGORY
Get a Sublist Based on Category
Support an ALL category
Add a Category Selector to the GUI
Handle Changing a Movie's Category
Interface Cleanup
Retrospective

16 PERSISTENCE
‘Write to a Flat File
Save-As in GUI
Save in GUI

199

203
203
204

207
207
219
226
233

235
235
239
246

247
247
251
259

261
261
264
270
276

277
277
281
284
288

289
289
292
293
300
304
306

309
309
313
322

viii

Contents

Read from a Flat File
Load in GUI
Retrospective

17 SORTING
Compare Movies
Sort a MovieList
Ask a MovieListEditor for Sorted Lists
Add a Way to Sort to the GUI
Retrospective

18 MULTIPLE RATINGS
Multiple Ratings
Rating Source
Revised Persistence
Show Multiple Ratings in the GUI
Add a Rating in the GUI
Remove the Single-Rating Field
Retrospective

19 REVIEWS
Add a Review to Ratings
Save Review
Load Review
Display Review
Add a Review
Retrospective

20 PROJECT RETROSPECTIVE
The Design
Test vs. Application
Test Quality
Our Use of Mocks
General Comments
Debugging
List of Tests
Summary

IV xUnit Family Members
21 RUBYUNIT

22 SUNIT

23 CPPUNIT

328
333
337

339
339
343
349
350
353

355
355
362
370
385
390
395
395

397
397
400
401
403
412
414

415
415
418
419
422
422
423
424
432

433
437
443

449

