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FOREWORD

My responsibility in writing this foreword is to help you decide whether to read
this book. If you are interested in improving your programs and your program-
ming skill, this book can help you.

Test-Driven Development is a practice that can make your programs better.
If you're like me, using the techniques in Dave’s book, you will find that your
programs are more clear, that they come into being more easily, and that you'll
have fewer defects than you used to.

I'm not saying that TDD is some kind of magic potion; quite the contrary.
TDD isn’t magic, it is something that you yourself do. By focusing attention
on tests first, you’ll be designing your program more from the viewpoint of the
user. By doing the tests one at a time, you’ll be creating a simple design that’s
focused exactly on the problem. As you work up all these little tests, you’ll drive
out most of the defects that otherwise slip into your code. Finally, by saving the
tests, you make the program easier to maintain and improve as time goes on.

Dave’s book is full of examples of Test-Driven Development. There’s an ex-
tended example to show you how TDD works over a longer haul. There are small
examples showing how to use most of the TDD-related tools that are avajlable.
There are even examples in most of the languages where TDD is used, though
the book’s main focus is on examples in Java. This is a book about practice,
with real examples rather than dry theory.

But wait! There’s more! Dave also gives a good introduction to refactoring,
and to programming by intention. And he introduces Mock Objects, an advanced
and powerful technique in testing and Test-Driven Development. Plus, he has a
section on one of the tricky areas in TDD, creating GUIs in test-first fashion.

You’ll also find a quick and valuable summary of eXtreme Programming, a
look at Agile Modeling, and a comprehensive list of online resources relating to
all the book’s topics.

All these things are good and serve as reasons to buy this book. The core
value of Dave’s book, the real meat, is in the code. Test-Driven Development is
a technique that we use as we program. No matter what design or modeling we
have done before we begin programming, TDD helps us make the code better.
I'm sure that it will help you, if you’ll give this book, and what it teaches, a
chance.

Xi



Xii Foreword

Test-Driven Development has made my programs better, and those of many
other programmers as well. It’s a technique that is worth adding to your bag
of tricks. This book will help you improve as a programmer. That’s why I’'m
recommending it.

Ron Jeffries

www. XProgramming.com
Pinckney, Michigan

18 December 2002



PREFACE

This isn’t a book about testing.

This is a book about a way of programming that leads to simple, clear, robust
code. Code that is easy to design, write, read, understand, extend, and maintain.

This is a book about thinking, designing, communicating, and programming.
It’s just a really nice side effect that we end up with a comprehensive! suite of
tests.

This book explores Test-Driven Development, Test-First Programming, call
it what you will: programming by writing the tests first, then writing the code
needed to make the tests pass. Specifically, working in the smallest steps possible:
write just enough of a test to fail, write just enough code to make it pass, refactor
to clean up the mess you made getting the test to pass.

This book focuses on the Java programming language and uses Java exam-
ples throughout. It is assumed that the reader has at least an intermediate
understanding of Java (and a working Java system if you want to try out the
examples for yourself). Example code and other support material is available at
my website[URL 54].

Even though the focus is on Java, Part IV looks at other prominent members
of the xUnit family for several popular languages. This is done by taking the first
task from Chapter 10 and recasting it in the various languages. This provides a
good comparison of the different frameworks.

EXTREME PROGRAMMING

Test-Driven Development is a core part of the agile process formalized by Kent
Beck called eXtreme Programming (XP). XP is probably the most agile of the ag-
ile processes, being extremely low overhead, and extremely low ceremony. How-
ever, it is extremely high discipline, very effective, and incredibly resilient to
change.

That being said, you do not need to adopt XP in order to practice TDD and
gain the benefit from it. TDD is worth doing on its own. The quality of your
code will improve. Of course, if you are doing XP it’s well worth it to get really
good at TDD.

1How comprehensive depends on how good we become at it.

Xill



XV Preface

TDD is one of the main design tools that we have in XP.?2 As I mentioned
earlier, the fact that we end up with a set of tests is a very pleasant by-product.
Because we have those tests, we can have confidence we haven’t inadvertently
broken anything if the tests ran successfully before the change and after it. Con-
versely, if a test fails after we make a change we know exactly what broke and
are in the best position to find the problem and fix it. The only thing that could
have caused the failure was the change we made since the last time the tests ran
clean.

All this means is that because the tests are there, we can safely use another
of the XP practices: refactoring. As we will see in Chapter 2, refactoring is the
process of making changes to the structure of code without changing its external
behavior. The tests let you confirm that you haven’t changed the behavior. This
gives you the courage necessary to make (sometimes drastic) changes to working
code. The result is that the code is cleaner, more extensible, more maintainable,
and more understandable.

Appendix A talks a bit more about eXtreme Programming. For more ex-
haustive information, you can browse the bibliography and explore the online
XP resources listed in Appendix C.

WHO SHOULD READ THIS BOOK?

Should you read this book? Helping you answer that question is why I wrote this
preface. There was once an informal survey on the XP Yahoo Group as to the
purpose that a preface should serve. The general opinion was that by reading
the preface you should get a good idea of whether you should buy and read the
book. I hope I've done a good job of it!

Read this book if you want to adopt eXtreme Programming. As stated earlier,
being able to do TDD well is worth the time and effort it takes to get good at
it. TDD is at the heart of XP, so doing TDD well makes the entire process that
much more effective.

Read this book if you want to write code that is clearer, more robust, easier
to extend, and as slim (as opposed to bloated) as possible.

Read this book if you know there must be a better way than spending weeks
or months drawing pictures before writing a line of code.

Finally, read this book if you want to know how to make programming fun
again.

In terms of what you should know before reading this book, it would help if you
had at least an intermediate understanding of Java. Having a good background
in another OO language or two (such as Smalltalk, C++, Python, or Ruby) will,
however, enable you to get even more out of this book.

As this book goes to print there is one other TDD book available[9] (although
I'm sure many will follow). 1 was aware of that book being written as 1 wrote
much of this one, and it was always a partial goal to be complementary to it.
From it you will get the philosophy and metaphysics of TDD, mixed with enough

2The other is refactoring.
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pragmatics to make it real. If you are so inclined, I encourage you to read it first.
The book you hold in your hands is, as the title says, a practical guide to doing
TDD. It’s focused on one language (not the best language, but arguably one that
is very popular and well supported for TDD), and presents not only concepts and
principles, but tools and techniques.

THE STRUCTURE OF THIS BOOK
This book is divided into four parts:

I Background In Part I we examine some topics that relate to the main body
of material in the book (i.e., TDD in Java). We start with an introduction
to TDD. This is followed by chapters on refactoring and programming by
intention. These two techniques are also prominent in XP and are required
and enabled by TDD.

II Tools and Techniques In Part II we take an in-depth look at various tools
that are useful for practicing TDD with Java, and how to use them. We
start with a tutorial introduction to JUnit, the defacto standard Java TDD
framework. We continue by exploring some of the standard (i.e., included
in the distribution) and nonstandard extensions to JUnit. Next, we explore
some tools that support the use of JUnit and other tools that are completely
independent of JUnit but work well with it. The final chapters in this part
examine specific techniques or issues and the related tools.

III A Java Project: Test-Driven End to End This is a practical hands-on
book. To that end, Part III (which makes up the bulk of the book) is built
around the development of a real system, not a toy example. We work
through this project test-first. Along the way we draw on material from
the previous parts of the book.

IV xUnit Family Members JUnit is just one member of a large and growing
family of programmer test frameworks. In Part IV we have a look at some
of the other members of the family. We don’t look at all of them, but we
go over several for the more popular languages. So that we get a good
comparison, we go through the same set of stories (i.e., requirements) for
each. Specifically, these are the initial stories from the Java project. This
lets us compare the various members with JUnit as well.

There are also four appendices:

A eXfreme Programming This appendix provides a very brief introduction
to XP.

B Agile Modeling This appendix provides an introduction to and overview of
Agile Modeling.
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C Online Resources Throughout the book I refer to Web sites where you can
find information as well as downloads. This appendix contains a catego-
rized, annotated list of these sites.

D Answers to Exercises Many of the chapters in this book contain exercises
for the reader. This appendix contains all exercises in the book, with an-
swers.

CONVENTIONS USED IN THIS BOOK

I've adopted a handful of visual conventions which I’ve used throughout this book
to make it easier for you, the reader, to differentiate between different sorts of
information.

Source Code This book contains a large amount of source code. When one
of more complete lines of code is being presented, it is indented and set in a
sans-serif font, like this:

public int getAverageRating() {
return totalRating / numberOfRatings;

}

When only part of a line is being presented, it is set in the same font, but
kept in the body of the text. This often includes class names (Movie), methods
(equals()), and constants (true, "a string”, 42).

In general, when a method is referred to parameters are not included, but
empty parentheses are, so that it is obvious that it is a method as opposed to
some other type of identifier, for example: aMethod().

In blocks of code, package and import statements are generally left out.

Filesystem and console I/O Terms relating to the filesystem are set in a serif,
monospaced font. This includes items like filenames (filter.properties) and
commands and their output:

java \

-classpath bin:/usr/local/java/lib/MockMaker.jar \

mockmaker . MockMaker \

com.saorsa. tddbook . samples.mockobjects. IntCalculator \
>src/com/saorsa/tddbook/samples/mockobjects/MockIntCalculator. java

vV V V V &

Tips and Sidebars I've used a couple of different callout mechanisms to highlight
information that is important to take note of, or is interesting but doesn’t fit in
the body of the text for some reason.

#

Throughout the book there are small bits of wisdom that you may find especially useful.
These are set apart the way this paragraph is.
ﬂ




Preface xvii

’

I’ve used sidebars to separate short passages that are not directly related to
the main body of text. Sidebars get placed as IATEX sees fit, usually at the top
of a page. There’s one around here somewhere as an example.

Terminology I learned OO in the context of Smalltalk and I've used Smalltalk
terminology from the beginning. If you're not familiar with Smalltalk, I include
a few terms that I use, and how they map to Java and C++:

instance variable A variable whose scope is an object. Each object has a sep-
arate copy of this variable. (Java: field or member variable, C++: data
member.)

class variable A variable whose scope is a class. All instances of the class share
a single copy of the variable. (Java: static field, C++: static data member.)

method A functional member of a class. (Java: method, C++: member func-
tion.)

sending messages to an object A more abstract way to refer to calling an
object’s methods.

senders Methods that send a specific message, that is, call a specific method
(commonly called references to a method).
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