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Recent advances in technology have made it possible to fabricate structures
whose dimensions are much smaller than the mean free path of an electron.
This is the first text-book to give a thorough account of the theory of elec-
tronic transport in such mesoscopic systems. Important concepts are illus-
trated by reference to relevant experimental resuits.

The book begins with a chapter summarizing the necessary background
material. The next chapter introduces the ‘transmission formalism’ which is
widely used in describing mesoscopic transport. The applicability of this for-
malism to different transport regimes is examined and practical methods for
evaluating the transmission function are discussed. This formalism is then
used to describe three key topics in mesoscopic physics: quantum Hall effect,
localization, and double-barrier tunneling. Optical analogies to mesoscopic
phenomena are discussed briefly. The book closes with a simple intuitive
description of the non-equilibrium Green’s function formalism and its rela-
tion to the transmission formalism.

Emphasizing basic concepts and techniques throughout, and complete with
problems and solutions, the book will be of great interest to graduate students
as well as to established researchers interested in mesoscopic physics and
nanoelectronics.
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A few common symbols

spectral function

vector potential

magnetic field

capacitance

diffusion coefficient
electronic charge

electric field

equilibrium Fermi energy
band-edge energy (bulk)
band-edge energy (2-D)
equilibrium Fermi function
quasi-Fermi energy
normalized conductance
conductance

electron correlation function
hole correlation function
advanced Green’s function
retarded Green’s function
Planck’s constant

= h/2n

current per unit energy
current

current density

Boltzmann constant
Fermi wavenumber

xiii

eV

V s/m
10°G=1T=1Vgm®
F

cm’/s
-1.6x10°"C
V/icm

eV

eV

eV
dimensionless
eV
dimensionless
Q—l

(eV) ™' in a discrete
representation

6.63 X107*7Js

AleV

A

A/cm’ (3-D)
A/cm (2-D)
0.087 meV/K
cm—l
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A few common symbols

length

mean free path
phase-relaxation length
effective mass

free electron mass

number of transverse modes

(areal) electron density
(2-D) density of states

reflection amplitude
reflection probability
resistance

area

time

transmission amplitude
temperature
transmission probability
transmission function

potential energy
velocity

drift velocity

Fermi velocity
electrostatic potential
width

energy broadening
cutoff energy

unit step function

Fermi wavelength
mobility

electrochemical potential
attempt frequency

linear density of scatterers
(2-D) resistivity

cm

cm

cm

for GaAs the standard
value is 0.067 my,. We will
generally use 0.07 m, in
our examples

9.1 X 107 kg
dimensionless

fem®

= m/nk?

~2.9 X 10'%cm’ meV for
GaAs

dimensionless
dimensionless

Q

c“,‘2

s

dimensionless

K

dimensionless

= (number of modes) X
(transmission
probability/mode)
eV

cm/s

cm/s

cm/s

\"

HE)=1 ifE>0
=0 ifE<DO



A few common symbols xv

o (2-D) conductivity Q!

™ advanced self-energy

" retarded self-energy (eV) in a discrete
P inscattering function representation
I™  outscattering function

Tm momentum-relaxation time

T, phase-relaxation time

w/2rn  cyclotron frequency

Please note that we have often used the terms ‘electrochemical potential’ (u)
and ‘quasi-Fermi energy’ (F,) interchangeably.

A webpage has been set up at
http://dynamo.ecn.purdue.edu/ ~ datta/etms.htm! or
http://www.ece.purdue.edu/ ~ datta/etms.htm]

where additional information related to this book will be posted.
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Introductory remarks

It is well-known that the conductance (G) of a rectangular two-
dimensional conductor is directly proportional to its width (W) and
inversely proportional to its length (L); that is,

G =oW/L

where the conductivity o is a material property of the sample independent
of its dimensions. How small can we make the dimensions (W and/or L)
before this ohmic behavior breaks down? This question has intrigued
scientists for a long time. During the 1980s it became possible to fabri-
cate small conductors and explore this question experimentally, leading
to significant progress in our understanding of the meaning of resistance
at the microscopic level. What emerged in the process is a conceptual
framework for describing current flow on length scales shorter than a
mean free path. We believe that these concepts should be useful to a
broad spectrum of scientists and engineers. This book represents an
attempt to present these developments in a form accessible to graduate
students and to non-specialists.

Small conductors whose dimensions are intermediate between the
microscopic and the macroscopic are called mesoscopic. They are much
larger than microscopic objects like atoms, but not large enough to be
‘ohmic’. A conductor usually shows ohmic behavior if its dimensions are
much larger than each of three characteristic length scales: (1) the de
Broglie wavelength, which is related to the kineiic energy of the elec-
trons, (2) the mean free path, which is the distance that an electron
travels before its initial momentum is destroyed and (3) the phase-
relaxation length, which is the distance that an electron travels before its
initial phase is destroyed. These length scales vary widely from one
material to another and are also strongly affected by temperature,




2 Introductory remarks

1mm

Mean free path in the quantum
Hall regime

100 um

Mean free path / Phase-relaxation length
in high mobility semiconductors atT < 4 K

10 pm

Commercial semiconductor devices (1990)

de Broglie wavelength in semiconductors
10 om Mean free path in polycrystalline metal films
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g

Fig. 0.1. A few relevant length scales. Note that
lum=10"m=10"cm
1nm = 10”° m = 10 angstroms (A).

magnetic field etc. (Fig. 0.1). For this reason, mesoscopic transport
phenomena have been observed in conductors having a wide range of
dimensions from a few nanometers to hundreds of microns (that is,
micrometers).

Mesoscopic conductors are usually fabricated by patterning a planar
conductor that has one very small dimension to start with. For example,
Fig. 0.2 shows a ring-shaped conductor having dimensions ~ 100 nm,
patterned out of a polycrystalline gold film ~ 40 nm thick. This is the
structure that was used for one of the landmark experiments in
mesoscopic physics: the resistance of this ring was shown to oscillate as
the magnetic field through it was changed because the magnetic field
modified the interference between the electron waves traversing the two
arms of the ring.

Although some of the pioneering experiments in this field were
performed using metallic conductors, most of the recent work has been
based on the gallium arsenide (GaAs)-aluminum gallium arsenide
(AlGaAs) material system. Figure 0.3 shows a Hall bridge patterned out
of a conducting layer ~ 10 nm thick formed at a GaAs-AlGaAs inter-



