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Preface

This book has been used in NPU for 3 times since 1985,

It contains all the mathematical materials usually taught for freshmen in Chi-~
na and supplies a f{ew extra useful materials, such as vector valued functions and
integrals with a parameter,

The main difference between this book and the others is that theoretical deduc-
tions are enhanced in this book, In this book the theory of Riemann integral is re-
placed by the theory of Lebesgue integral, the classical theory of Fourier series is
replaced by the L? theory, eic,

_There are 12 chapters in this book, The first 8 chapters deal with materials
concerning the differential calculus of functions of one variable and will be cover-
ed in the first semester with 95 hrs,(80 lecture hrs, and 16 practice hrs,). The re-
maining 4 chapters deal with the integral calculus of functions of one variable,in-
finite series and the calculus of functions of several variables and will be covered
in the second semester with 112 hrs,(96 lecture hrs, and 16 practice hrs,)

This book is supplied for freshmen in a higher level,
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Foreword

Calculus was invented by Newtor and Leibniz independently in the 17th century,
Using Calculus Newton solved some problems in Dynamics, and Leibniz, in Geo-
metry, Thereafter,a great progression in Calculus has been made by many famous ma-
thematicians, e+g+ Euler, Cauchy, Riemann, Lagrange, Weierstrass and others, It is
now well known that most of the natural laws must be described and investigated by
Calculus, So Calculus is very important for scientists and engineers,

Calculus consists of two essential parts, the differential calculus ane the integ-
ral calculus, The theory of differential calculus discussed here is classical, but the
theory of integral calculus is modern, which is achieved by Lebesgue and other
mathematicians in this century,

We will discuss the theory and application of Calculus for functions of one
variable at first and then functions of several variables, Some closely related topics,
such as elementary differential equations, infinite series and vectors are inserted
appropriately,
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Chapter | Functions

Function is the main object Calculus deals with, In this chapter we will intro-
duce the concept of a function and some other basic concepts,

1.1 Real numbers and the number axis

1° Real numbers

By real numbers we mean the terminating or non-terminating de,cimals,-%-,——%,

v'9, m, e+ are real numbers, since they can be converted into dec;mals. Here-

after we will mainly deal with rea) numbers and ca)l them numbers for simplici-
ty. '

2° The number axis o

A number axis is a directed line with
a fixed point O on it and with a unit
length attached, fig t.1.1

It is well known that every number corresponds to one and only one point on
the number axis, and conversly, Because of this fact, it will cause no confusion,
if we don’t distinguish the term point and number rigorously,

3° +oo(positive infinity)

+ oo is an ideal number which is thought to be greater than any real number
x, (+ oo>x), It corresponds to the point Jocated at infinity on the right hand
side of the number axis, It should be noted that +oo is not a real number, so
any arithmetical operation about + oo is not yet defined, !

4° —co(negative infinity)

—~co may be discussed in a similar way,

1.2 Number sets and bounds of sets

° Number sets

By a number set, or simply set, we mean an aggregate of real numbers with
certain property, '
Ex.1 The aggregate of all those x, such that 0<{x<(3 holds is a set, k
Ex,2 The aggregate of all those x, such that x*—-1=0 holds is a set,

The set of all those x, such that property p holds for them, is 'denoted by
{x|p}. According to this notation, the sets in the above examples may be written
as {x|0<x<(3} and {x|x?-1==0}, respectively, ‘

Sometimes, a set may consist of no number, For example, {x|x%<{0}.is such
a set, since x2>0 for any real number x, A set consists of no number is called
an empty set or null set, and denoted by ¢, A set consists of all the numbers is
denoted by R,



2% Bounds of sets

Let S be a given set and M be a number, such that M>x, for any x belongs
to S, or symbolically M>)r, A4 ng, ( “yv” means “for any” and “€” , “belongs
to” ) :

We call such M an upper bound of S. And S is said to be bounded above (by
M),

For example, let S={x[0<<2} and M=14, then 4>x, v x€S, So 4 is an upper
bound of this set S-and S is hounded above, Similarly, 5, §, 7.2, «= are all upper
bounds of S, Among these upper hounds, there is a least one, 3, which is called
the least upper bound of S,

The least upper bound of S may or may not belong to S, For example, the
least upper bound of the set S in Ex,1 does not belong to S while the least upper
bound of theset S in Ex,2 does, eic,

It is an important property that if a non- empty set S has an upper bound,
then it has a least upper bound rhls important property is called the Dedkind’s
property, ... ... . ;o

The least upper bound of S is denoted by l,u,b, S or sup S (Supremum of S),

It should be noted that.,xf the set has no upper bound at all, then it certainly
has ho least upper bound, For example, the set J consists of all positive integers
has no upper bound and hence no least upper bound,

If a set S has no upper bound, we say that l,u,b, S orf sup S is +oo,

The lower bound and greatest Jower bound of a set may be discusséd in a simi-
lar way ‘and we leave it as an exercise. ‘

The greatest lower bound of S is denoted by g.1,b,S or inf S (infrmum of S),

The sets bounded above and below are called bounded sets,

1. 3 Intervals and nenghborhoods

1° Intervals :

The set {x|x lies between a and b} is called an interval a, b, It may be re-
Presented by a segment on the numher axis, a and b are called the boundary points
of this interval, which may or may not be included in the interval, When a and b
are included in the interval, the interval is called a closed interval, i,e,
a closed interval is the set {x|a<<x<{b}, we denote this closed interval by [a, b].
when a and b are not included in the interval, the interval is called an open inter-
-val, i,e, ap open interval is the set {x|a<<x<<b}, we denote this open. interval by
(a, b), The interval) a, b, which includes just one boundary point is called a half
open interval, A half open interal a, b is denoted by [a, b) or (a, b] acoording as
a or b is included, We use the square or the round bracket to distinguish the boun-
dary point is included or not, In case we do not care about whether the boundary
points are included or not, we just say the interval a, b, and denote it by {a, b),
The points other than the boundary points are called the interior points of the inter-

val which have the property that each:of them has a neighborhood contained entirely

in the intérval, as will be seén in the next article,
2® Neighborhoods _
(a—8, a+08), where 8 is any positive number, is called a neighborhood ©of a,

2

SRS




with radius §, which is an open interval with center a and radius 8.
(a8, a+8), with a excluded, is called a deleted neighborhood of a,

a—-0 a a+g a~-¢ a a+
A ). Lo e \ -
< 4 i A ~ K
neighborhood " deleted neighborhood
fig 1,31 fig 1.38.2

Ex.1 (1-2, 1+2) is a neighborhood of 1 (with radius 2);
(1-2, 1+2), with 1 excluded, is a deleted neighborhood of 1.
Any number has infinitely many neighborhoods,
The set {x]|x>>N} is called a (deleted) neighborhood of + oo; the set {x[x<C
~ N} is called a (deleted) neighborhood of — oo,

-N - t
N L
3 <
4
neighborhood of + neighborhood of — w
fig 1.3.3 fig 1.,3.4

The intuilive meaning of neighborhorhoods is obvious,
Sometimes we also call {a, a+38) and (a—8, a] the right and left neighborhood
of a, respectively,

¢ 1,4 Variables and functigns

1° Variables
Quantities that may take various values, occur frequently in our daily life, we
call such quantities the variables,

Ex,1 If a car is being driven then the time t (measured in minutes) of movement
is a variable, the distance d (measured in miles) being covered by the car is
a variable, the temperature T (measured in C)in the car is a variable,
etc,

Ex,2 1If a gold ring is being heated, then the radius r (measured in cm,) of the
ring is a variable, the circumstance ¢ (measured in cm,) of the rihg is a va-~
riable, ) '

2° Functions
A quantity is called a function of another variable, defined on some cet D, iff

(if and only if)the value of this quantity is uniquely determined by the value of the

other variable taken from D, We call this variable the independent variable,and D

the domain of the funciion,

Ex.3 3x+2 is a function of the variable x, defined on R, since the value of 3x +2
is uniquely determined by the value of x iaken from R, :

Ex.4 x? is a function of the variable x, defined on R,

Ex.5 When the velocity of a'moving car is given, the distance d (measured in miles)
being covered by the car is a function of the time t (measurel in minutes) of
movement, defined on some interval [0, NJ,



Ex.6 In Ex.2, the circumference ¢ is a function of r defined on some interval(lL,
M)o
A function of the variable x is cenoted by f(x) or g(x), @(x), <= , If the
function is defined on D, we may add a supplement that it is defined on D, We
must use different symbols 1o denote different functions,

The value of a function f(x), as x takes the value a is denoted by f(x);‘\\‘,., or
f(a), If f(a)=0, then a is said to be a zero of f(x),.

— ' — - 2 - . 4§
Ex, 7 If f(x)=3x+2, then f(x) 3 —-(3x+2)\u]3_ —3(—3—)+2—0 . That is,

—% is a zero of 3x+2,

Sometimes we denote a specified value taken by the variable x by the symbol x
as well, but distinguish them by the words “variable” and “value” , if necessary,
Accordingly, f(x) is a function of x, if x denotes a variable; f(x) is a value of a
function, if x denotes a value,

3° Rénges and graphs

By the range of a function f(x) defined on D, we mean the set of values of
f(x), as x takes all values over D,

Ex.8 The range of 3x+2 is R, since Vv a €R, there is an x € R such that 3x +2
=a, The range of x~? is the positive real number set R*, since ¥ a € R,
there is x € R, such that x~?=a and for non-positive a, there isn’t,

By the graph of a function f(x), defined on D we mean the set .of all points
(x, v), with y=£(x) and x takes values over D,

Ex,9 The graph of the function 3x +2 defined on R, is the set of all (x, y) with
y=3x +2 and x takes values over R.

Thus (-1, -1), (0, 2), (1, 5), <= are yy

all points of the graph,The whole graph is

a straight line on the xy-plane,

Generally, we can get the graph of a
function approximately by plotting many
points of the graph, The more points we P
plot, the more accurate figure we get, /

4° A note about the domain

fig 1.3.5
The domain of a function is usually not mentioned in the following two cases:
1) It is clear -from the context.
Ex,10 In Ex,5, we may just say that d is a function of t 3 In Ex,6, we may just
say that ¢ is a function of r,
2) It is clear from the expression.
Why? In mathematics we have the convention that if the expression of f(x)
is given, then its domain is always assumed to be the set of all those values of x
for which the expxession has a meaning, unless otherwise specified,

Ex.11 If ()= 1___ find its domain,

4




By convention, we have 1o find out the set of all those x,for which the expres-

sion has a meaning, we try to do this,

N S
vix-1
Since we only consider real numbers, the number under the radical sign %/
must=(, otherwise the expression has no meaning,

x-1=20, i,8, Xx=21
Moreover, since the denominator of a fraoction oan never be 0, otherwise the

fraction is meaningless, so
x—-12%0 i,e, x¥x]

Combining these two results, we get the set of all those x for which S

v o x-

has a meaning is, {x|x>1} i.e (1, +oo), This is the domain of the given func-
tion, '

1.5 To express functions

1° Some examples

In the last section, we have seen many examples of functions, In Ex.3 and Ex,
4, 3x+2 and x? are functions of x; In Ex,5 and Ex.6 d is a function of t and c is
a function of r, There is a main difference between these functions, In Ex,3 and
Ex.4, how to get the value of the function from the value of the independent vari-
able is known, while in Ex,5 and Ex,6 is not, A function is caid to be expressed,
if how to get its value from the value of the independent variable is known., Other-
wise, the function is said to be unexpressed, How to make an unexpressed function
cxpressed is important in application, If we can not make a function expressed, then
we are usually unable to investigate it more concreiely, But there is no general rule
to make a function expressed, We must use different rules for different problems ac-
cordingly, The following are some examples,
Ex.1 Make the unexpressed functions disoussed above expressed,

Solution,In Ex,5, 1,4, by physics,

d=v,t(Suppose the car moves with a constant speed v,)

In Ex,6, 1.4, by Geometry, c=2nr,

Ex,2 Enclose a reotangle by a string of a given length 1. Its area A is a function
of its width x, Make it expressed (or express A as a function of x).

Solution, We want to find the value of A for any specified value x,Draw a fi-
gure, Let x be the width, h the height, From the figure, A=xh,
But

1=2x +2h
So

_ 1

h= ‘2—(1"3(). h x
Hence

1
A=L(-2m)x
2 fig 1.5.1



Ex,3 Mr, A is 20 ml, due north of Mr, B
A walks to the east with a velocity 6 ml/hr;
B walks 1o the north with a velocity 5 ml/hr,
After t hrs, the distance between A and B is d miles, d is a function of
t, Make it expressed, (or express d as a function of t)
Solution, We want to find the value d
for any specified value t, Draw a figure Oy
at first, Originally, Mr, A and Mr, B are
at (A) and (B) respectively, After t hrs,
They arrive at A and B respectively,
From the figure,
d?=(BA)?
== [B(A) *+ [(A)A] *
=(20-51)%+ (61)*
by Pythagorean formula for right triangles,
Thus ' 5t
d=+v/(20-50)% + (61) 2

®)
But d>=0, so
4=y -5 @D fig 1.5.2
Ex.4 Consider a variable rectangle inscribed in a given circle of radius R, i,e, a
variable ‘rectangle with vertices on the circle, T[t’s area A is a function of
ils width x, Make it expressed {or express A as a function of =)
Solution,Draw a figure to make the meaning clear, from the figure,
: A=x]
But by 'Pythagorean formula for right tri-
angles

12=(2R)* ~x*
i,e.

1=y Rt
So

A=xy/ @R x?

fig 1.5.3
Ex.5 An open rectangular box is to be made from a piece of cardboard 8cm, wide

——— an G- —

[¢.]

———— —— — —

8-2xv

fig 1.5.4
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and 8cm, long by cutting a square from each corner and bending up the sides,
Its volume V is a function of the side x of the square cut, Express this func-
tion,
Solution, Draw the necessary {igures, From the figures,
V=(8~-2x)%x
Ex.6 The length 1 of the chord suspended by an arc on a given circle of radius R
is a function of the length x of the arc, Express it,
Solution, Draw a figure, From the figure, we see that the central angle suspen—

ded by the arc is % radians, Hence the
length 1 of the chord is

1-2Rs1n2(R) 2R sin R

Ex.7 A shop gives its customer one coupon

for every one dollar he has paid in

one purchase (The cents are neglect- fig 1.5.5

ed), The number y of the coupons

that a customer geis is a function of the money x he has paid, Express it,

Solution, If he has paid less than one dollar then he gets no coupon; i,e, y=0,

0<<x<{1, If he has paid less than 2 dollars but not less than 1 dollar, then he gets
1 coupony i,e, y=1, 1<<x<(2; If he has paid less than 3 dollars but not less than 2
dollars, then he gets 2 coupons; i,e. y=2, 2<x<3; etc, (Suppose that any payment
is available), This funotion can be expressed in a wore concise form;

0, 0 <x<1

1, 1<x<2
y:

Lz, 2 <x< 8

LR N TN PY R Y R TS

The graph of this function is the set of all those (x,y), such that y is the cor_
responding value of this funciion determined by x and x is any positive number, Thus,
the graph of this coupon function is shown as follows,

y
M
()
—-—m
__.JL_.—G_ v e X
L]
fig 15.6

From this interesting example we see that



