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An Introduction to Solid Oxide
Fuel Cell Materials, Technology
and Applications

Samuel J. Cooper and Nigel P. Brandon
Imperial College London, London, United Kingdom
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This chapter aims to give the reader an overview of solid oxide fuel cell
(SOFC) technology in terms of both the fundamental theory and real world
applications. It concludes with an introduction to the various degradation

mechanisms common to many fuel cell systems today, which are discussed
in detail in the following chapters of this book.

A BRIEF HISTORY OF SOLID OXIDE FUEL CELLS

Fuel cells are a family of electrochemical devices, which generate electricity
by promoting a redox reaction across an ionically conductive membrane.
Although fuel cells were first reported in 1839 by Sir William Grove, it was
not until 1961, when NASA began Project Gemini, that they found their first
practical application [1]. Fuel cells are typically named in terms of two key
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2 Solid Oxide Fuel Cell Lifetime and Reliability

characteristics: the mobile ion and the electrolyte material, with the operating
temperature also being used to subclassify in some cases.

SOFCs are named after their ion conducting, ceramic oxide electrolyte
and their history is tied to some of the great names in science and engineering.
Faraday’s early investigations of conduction in ceramics in the 1830s [2], led
him to classify conductors into two categories, although the exact mechanism
for these two modes of conduction was unknown. It was not until much later,
in the 1890s, when Walther Nernst observed the significantly increased con-
ductivity of mixed oxides over their pure constituents that the first technologi-
cal implication of ion conduction in solids was conceived. Although
ultimately not a commercial success, due in part to its high cost, the “Nernst
Glower” was nearly twice as efficient as the carbon filament lamps of the day
[3]. The device consisted of a ceramic oxide rod made of yttria-doped zirconia
(often referred to as the “Nernst Mass”) which, after preheating to around
1000°C, would begin to conduct under load; this in turn led to the temperature
increasing further, causing the rod to glow. The 1930s saw the conceptual
development of ion conduction through lattice defects by Schottky [4] and
Frenkel [5], which led to the submission of the first SOFC patent through
Siemens and Halske [6].

The first cell beginning to resemble a modern configuration was proposed
by Baur and Preis [7], who used the “Nernst Mass” for the electrolyte in
combination with metal oxide electrodes. Although the system was a failure
due to high Ohmic losses, it spurred a new wave of investigation into con-
ducting mixed oxides. Over the following 30 years, Kiukkola and Wagner
[8] and many others [9,10] undertook a systematic investigation into ion-
conducting electrode materials in order to find structures that had both the
mechanical and electrochemical properties required for a durable fuel cell.

By 1970 the adoption of electroceramics for a broad range of other indus-
trially relevant applications, such as sensors (e.g., lambda sensors that are
widely used today to measure the air/fuel ratio in engine exhaust gases) and
oxygen separation membranes, led to key advances in materials processing
and the materials supply chain. Other related advances, for example in the
semiconductor industry, resulted in processes emerging such as electrochemi-
cal vapor deposition [11]. This allowed for much thinner layers of high-
purity material to be deposited, which not only had the potential to reduce
Ohmic losses, but also opened the possibility of using materials previously
deemed too costly.

Following the first and second oil crises of the 1970s, which cumulatively
led to a 10-fold increase in the price of oil [12], governments from fuel
importing nations began to invest more heavily in the research and develop-
ment of alternative energy technologies [13]. Since the early 1990s, a
sequence of SOFC companies predominantly from the United States,
Western Europe, and Japan have emerged aiming at bringing a range of
SOFC configurations to market.
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These companies are developing technologies largely focussed on the dis-
tributed generation market.

e Residential combined heat and power (c. 1 kW,)
- e.g., Solid Power, Ceres Power

e Commercial grid-independent generators (c. 100 kW,)
- e.g., Bloom Energy

e Industrial SOFC gas turbine hybrids (c. 1 MW,)
- e.g., LG Fuel Cell Systems

Common to all of these applications is the necessity for the devices to
operate for extended periods (5—10 years) without requiring significant
maintenance or replacement. It is also critical for the cells, stacks, and sys-
tems to be able to withstand the inevitable shut down events, which poses a
particular problem for SOFCs due to their high operating temperature and
brittle ceramic components.

State of the art SOFC devices can already achieve electrical efficiencies
of above 50% and combined heat and power systems exist with total effi-
ciencies in excess of 90%. These two metrics are very impressive on their
own, but in combination with the lack of NO,/SO, or particulates in the
exhaust stream and the low noise/vibration of these systems, the appeal of
SOFC devices is clear. However, SOFCs will not be able to fully deliver on
their potential until the degradation issues key to lifetime are resolved, which
is the subject of this book.

SOLID OXIDE FUEL CELL FUNDAMENTALS

The Nernst potential, Enems, Of an SOFC is a function only of the physical
properties and chemical composition of its two incoming gas streams (fuel
and oxidant). It can be determined using the Nernst equation, which is the
sum of the standard cell potential E” and a term that describes the activity at
the specific conditions in question,

R P P1/2
ENemstzEO—'_%ln( o (11)

Py.o

where R is the universal gas constant, T is the temperature, F is the Faraday
constant, and P, is the normalized partial pressure of species x. The standard
cell potential term, E°, is calculated as the difference between the equilib-
rium potentials of the two reduction/oxidation (redox) reactions under stan-
dard conditions:

2H +2¢ " =H, (E°=0V) (1.2)

1
502 +2H" + 2" =H,0 (E"=123V) (1.3)
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For the hydrogen—oxygen redox couple under standard conditions, the
cell potential is 1.23 V. As a current is drawn, the system moves away from
equilibrium and the potential between the two electrodes decreases. The
Nernst potential describes an idealized reaction, which is a useful reference
when quantifying the four main categories of losses (overpotentials) in
SOFCs: activation losses, Ohmic losses, concentration losses, and crossover
losses.

Activation Losses

Activation losses can be considered as the potential required to drive the
reaction forward at the required rate, noting that the high operating tempera-
ture of SOFCs significantly improves the reaction kinetics. The
Butler—Volmer equation quantifies the effect of the charge transfer processes
at each electrode on the total current density, j,

.. ankF achF
s (222 - (2222 ”

where n is the number of electrons involved in each electrode reaction, 7 is
the activation overpotential, and «, and «. are the anodic and cathodic
charge transfer coefficients, respectively. The activation overpotential is
described by the relation,

n= Eetectrode — ENernst (1 5)

which is the difference between real and equilibrium potentials, specified at
each electrode. The magnitude of this overpotential increases at each elec-
trode with the current, thus reducing the overall potential of the cell.

Ohmic Losses

These are caused by the resistance to flow of electrical current through
the cell. Typically the ionic transport, as opposed to electronic, is the
most significant contribution to this overpotential. The intrinsic conductiv-
ities of the various materials, the cell and stack geometry, and the convo-
lution of the conduction paths in the porous electrodes, all need to be
considered.

Concentration Losses

The electrochemical reactions typically only occur in a region close to the
electrode—electrolyte interface, which means the gases must first travel
through much of the porous electrodes. At high current densities, this can
become the rate limiting step for the system.
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FIGURE 1.1 Plot of current density against cell voltage, illustrating the breakdown of cell
performance by loss type.

Crossover Losses

This category covers two fairly distinct sources of loss. First, electrolytes,
either through porosity or cracking, may be gas permeable, which means that
some of the fuel is either exhausted or locally combusted. Second, internal
electrical currents may occur in the electrolyte if it is not a perfect electronic
insulator. These two losses are responsible for the difference between the
theoretical Nernst potential and measured open circuit voltage (OCV).

The relative significance of each of these types of loss is dependent on
the load applied. The graph in Fig. 1.1 plots the cell voltage as a function of
current density and is labeled with the contributions of the first three sources
of loss described above.

The redox reaction in an SOFC is split into two half-cell reactions (see
Egs. (1.2) and (1.3)), with one occurring at each electrode and completed by
the transport of mobile ions and electrons around separate paths.

SOLID OXIDE FUEL CELL DESIGN

The electrochemically active components of conventional SOFCs comprise
two porous electrodes, an anode and a cathode, separated by a dense electro-
lyte. Each of these components must exhibit certain characteristics for the
system to function effectively; for example, in a typical SOFC the electrolyte
must be gas tight and conductive to ions, but not to electrons. The perfor-
mance of the anode and cathode is strongly influenced by both their material
composition and their porous microstructure [14]. Both electrodes support
electrochemical reactions and must also allow for conduction through their
bulk and diffusion through their pores. A schematic of a planar cell assembly
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with interconnects can be seen in Fig. 1.2. Interconnects are used to collect
the current and guide the gas flows, but are also required for stacking multi-
ple cells in series.

Early fuel cells were predominantly tubular in design, in part because these
systems were much easier to seal, and some developers continue to pursue this
design; however, most commercially available systems today are in the planar
configuration due to manufacturing considerations, optimal volumetric power
density, and the ease of cell stacking. Stacking allows the system to have a
higher voltage (series stack) or current (parallel stack) than a single cell. The
schematic in Fig. 1.2 shows a series configuration of planar cells.

Several other cell geometries have also been developed, a selection of
which are shown in Fig. 1.3, including the no longer pursued bell-and-spigot
type, which is a means of serial stacking a tubular design with repeat frustum
units [15]; the tubular design, which is a tubular cell with diameters in
the range of 1—30 mm [16]; and the flat-tubular geometry, which combines
the sealing and mechanical advantages of a tube, whilst maintaining the
“stackability” of planar cells [17].

In addition to the geometry of the whole assembly, the relative thickness
of each layer of the cell must be optimized. Typically, one of the four layers
in the systems will be used as a support onto which the remaining layers can
be deposited, as shown in Fig. 1.4. The supporting layer will inevitably be
thicker than the others and so must be carefully optimized to minimize the

mmm Cathode
mawm Electrolyte
mvumn Anode
mmmm [nterconnect

One
cell

Current

FIGURE 1.2 SOFC schematic of a single cell between two interconnects, showing the passage
of fuel and air streams relative to the electrodes.

FIGURE 1.3 Schematic representation of SOFC cell geometries, including (I—r) planar, flat
tubular, tubular, bell-and-spigot.



