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Preface to Second Edition

With the publication of the Fourth Edition of Chemical Engineering, Volume 1, we felt it
appropriate to prepare this Second Edition of Volume 4 and again, group the solutions to
the problems in Volume 1 in sections corresponding to the chapters in that text and also
update the reference to the equations and sources of data in that text. We have been
encouraged in this by many readers who, in generating an amazing amount of correspond-
ence and, praise be, in finding our previous volume of value, have pointed out a mercifully
small number of errors and also made suggestions for improvement which have all been
incorporated; particularly the suggestion that where two problems are very similar in the
principles which they illustrate, then one or other might be omitted. The resulting, albeit
modest, increase in space has enabled us to include additional problems relating to and
illustrating the new material now incorporated in Volume 1 and here, we are more than
grateful for the problems provided in this respect by Professor J. F. Richardson who has not
only checked our efforts, but guided us, encouraged us and, at times, spurred us into action,
by what seems to be his ever-increasing zest, understanding and enthusiasm for this series of
texts. We owe him, our publishers and of course our colleagues at Newcastle a very great
debt of gratitude indeed.

More than once, our readers have suggested that we might, where appropriate, offer
solutions which make use of computer programs. Whilst we warm to this one, we feel that
the prime aim of this volume, as indeed was the case with the First Edition, is to illustrate
basic Chemical Engineering principles and, to this end, provide students with a series of
worked examples using the various techniques involved. We firmly believe that, once a
student has worked through these various problems ‘by hand’ as it were, then he or she will
be uniquely e«;uipped, with the computer by their side, to investigate further the vast range
of solutions which are available from a variation of input parameters and iteration techniques
and so be able to venture into all the complexities and joys of optimisation and both
energy-efficient and cost-effective design procedures. In a real sense, our aim is to offer, not
only a first-stage approach to problem solving, but also, dare we suggest, a way of thinking,
firmly believing that little can be achieved until this has been grasped. Once it has been
grasped however, then the possibilities are limitless.

Newcastle upon Tyne J. R. BACKHURST
1994 J. H. HARKER

vii



Preface to First Edition

In the preface to the first edition of Chemical Engineering, Volume 1, Coulson and
Richardson include the following paragraph:

“We have introduced into each chapter a number of worked examples which we believe are
essential to a proper understanding of the methods of treatment given in the text. It is very
desirable for a student to understand a worked example before tackling fresh practical
problems himself. Chemical engineering problems require a numerical answer and it is
essential to become familiar with the dlﬁ’erem techniques so that the answer is obtained by
systematic methods rather than by intuition.’

It is with these aims in mind that the present book, which in essence is a collection of
solutions to the problems in the third edition of Chemical Engineering, Volume 1, has been
prepared. The scope, of the book is, of course, that of Volume 1, and the solutions are
grouped in sections corresponding to the chapters in that text. The book has been written
co-currently with the preparation of the new edition of Volume 1, and extensive reference has
been made to the equations and sources of data in that volume at all stages. In this sense the
present book is complementary to Volume 1. The working throughout is in SI units and the
format is that of the third edition.

In common with countless students before us, we have battled with these problems for some
two decades, and although our approach to the solutions has been refined over the years, we
cannot claim to present the most elegant form of solution nor, indeed, always the most
precise. Nevertheless, we hope that there is much to be learned from our efforts not only by
the undergraduate but also by the professional engineer in industry.

This book could not have been written, of course, without the very real and longstanding
contribution of Professors Coulson and Richardson to the profession. It is with considerable
pleasure that we acknowledge our debt of gratitude, especially to Professor Coulson, who has
guided our thoughts and encouraged our activities over so many years. We also acknowledge
the help of our colleagues at the University of Newcastle upon Tyne and especially their
forebearance during the preparation of this book.

Newcastle upon Tyne J. R. BACKHURST
1976 J. H. HARKER
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SECTION 1

Units and Dimensions

Problem 1.1

98% sulphuric acid of viscosity 0.025 N s/m® and density 1840 kg/m’ is pumped at
685 cm®/s through a 25 mm line. Calculate the value of the Reynolds number.
Solution

Cross-sectional area of line = (r/4)0.025% = 0.00049 m?.

Mean velocity of acid, u = (685 x 107%)/0.00049 = 1.398 m/s.

= Reynolds number, Re = dup/u = (0.025x 1.398 x 1840)/0.025 = 2572
Problem 1.2

Compare the costs of electricity at 1p per kWh and gas at 15 p per therm.

Solution

Each cost is calculated in p/MJ.

1 kWh=1kWx | h=(1000J/s)(3600s) = 3,600,000J or 3.6 MIJ
1 therm = 105.5MJ
cost of electricity = 1 p/3.6 MJ or (1/3.6) = 028 p/MJ

cost of gas= 15p/105.5M1J or (15/105.5) = 0.14p/MIJ

Problem 1.3

A boiler plant raises 5.2 kg/s of steam at 1825 kN/m? pressure using coal of calorific value
27.2 MJ/kg. If the boiler efficiency is 75%, how much coal is consumed per day? If the steam
is used to generate electricity, what is the power generation in kilowatts assuming a 20%
conversion efficiency of the turbines and generators?

Solution

From steam tables, total enthalpy of steam at 1825 kN/m’ = 2798 kJ/kg.
enthalpy of steam = (5.2 x 2798) = 14,550 kW

Neglecting the enthalpy of the feed water, this must be derived from the coal. For an
efficiency of 75%, heat provided by the coal = (14,550 100/75) = 19,400kW.
For a calorific value of 27,200 kJ/kg, rate of coal consumption = (19,400/27,200)
=0.713kg/s
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or: (0.713 x 3600 x 24/1000) = 61.6 Mg/day (61.6 tonnes/day)

20% of the enthalpy in the steam is converted to power or:
(14,550 x 20/100) = 2910kW or 2.91 MW say 3 MW

Problem 1.4
The power required by an agitator in a tank is a function of the variables:

(2) diameter of impeller,

(b) number of rotations of impeller per unit time,
(¢) viscosity of liquid,

(d) density of liquid.

From a dimensional analysis, obtain a relation between the power and the four variables.

The power consumption is found experimentally to be proportional to the square of the
speed of rotation. By what factor would the power be expected to increase if the impeller
diameter were doubled?

Solution

If the power P = ¢(DNpy), then a typical form of the function is P = kDON® o< %, where k
is a constant. The dimensions of each parameter in terms of M, L, and T are: power,
P =ML/T’, density, p= M/L’, diameter, D = L, viscosity, # = M/LT, and speed of rotation,
N=T"'

Equating dimensions:

M: l=c+d
L: 2=za-3¢-d
T: -3=-b-d

Sohving intermsof i a=(5-2d), b=(3-d),c=(1 - d)

(D N o g
P*"[Dzdp-dﬂ
p

or: P/D’N’p = k(D*Np/uy ¥ that is: N, = k Re™

Thus the power number is a function of the Reynolds number to the power m. In fact N; is
also a function of the Froude number, DN’/g. The above equation may be written as:

PID’N°p = k(D*Np/ )™
Experimentally: P o N2
From the equation, Po NTN? thatism+3=2and m=-1
Thus for the same fluid, that is the same viscosity and density,
(P2/P)(DN/ DNy = (DEN,/ DS Ny)~" or (Py/P)) = (N{ DI)/(N}DY)
In this case, Ny =N, and D, = 2Dl.
(P,/P)=8D}/D}=8
A similar solution may be obtained using the Recurrin-g Set method as follows:

P=¢(D,N,p,p), f(P,D,N,p, u)=0
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Using M, L and T as fundamentals, there are five variables and three fundamentals and
therefore by Buckingham’s & theorem, there will be two dimensionless -groups.
Choosing D, N and p as the recurring set, dimensionally:

D =L Thus: L=D
N =T T=N"
p =ML M= pL® =D’
: . 23y 32 a3y-1 P
First group, n,, is PIMLT™ "y ' = P(pD"D°N")" ' =
pD°N?
Second group, 7, is (ML 'T™ )" ! = y(pD*D'NY ' = #,
pD°N
P
Thus: S5 —5=|=0
pD’N" pD°'N

Although there is little to be gained by using this method for simple problems, there is
considerable advantage when a large number of groups are involved.
Problem 1.5

It is found experimentally that the terminal settling velocity u, of a spherical particle in a
fluid is a function of:

particle diameter, d; buoyant weight of particle (weight of particle — weight of displaced
fluid), W; fluid density, p, and fluid viscosity, u.

Obtain a relationship for u, using dimensional analysis.

Stokes established from theoretical considerations that for small particles which settle at
very low velocities. the settling velocity is independent of the density of the fluid except in
so far as this affects the buoyancy. Show that the settling velocity must then be inversely
proportional to the viscosity of the fluid.

Solution
If: ug = kd®WPpSu?, then working in dimensions of M, L and T:
(L/T) = k(L(ML/TH*(M/L*f (M/LT))
Equating dimensions:

M O=b+c+d
L: l=a+b-3c-d
T -1=-2b-4d

Solving in terms of b:
a==-1,c=0b-1),andd=( - 2b)
uy = k(1/ dy(W?) 0%/ p)(u/u?®) where k is a constant,
or: uy = k(u/dp)(Wol u>’
Rearranging:

(dugp /1) = k(Wp/ 2
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where (Wp/u?) is a function of a form of the Reynolds number.
For u, 1o be independent of p, b must equal unity and w, = kW/du

Thus, for constant diameter and hence buoyant weight, the settling velocity is inversely
proportional to the fluid viscosity.

Problem 1.6

A drop of liquid spreads over a horizontal surface. What are the factors which will influence:

(a) the rate at which the liquid spreads, and
(b) the final shape of the drop?

Obtain dimensionless groups involving the physical variables in the two cases.

Solution

(a) The rate at which a drop spreads, say R m/s, will be influenced by: viscosity of the
liquid, u; volume of the drop, ¥ expressed in terms of d, the drop diameter; density of the
liquid, p; acceleration due to gravity, g and possibly, surface tension of the liquid, &. In this
event: R =f(u d, p, g o). The dimensions of each variable are: R=L/T, u=M/LT, d=L,
p=M/L% g=L/T? and o=M/T> There are 6 variables and 3 fundamentals and hence
(6 - 3) = 3 dimensioniess groups. Taking as the recurring set, d, p and g:

dELq L=d
psM/L3 M=pL3 =pd3
4§’EL/T2 T = L/g=d/g and T=d°'5/g°‘5

Thus, dimensionless group 1: RT/L = Rd%5/dg™ = R/(dg)*’
dimensionless group 2: uLT/M = ud(d®/("°pd®) = u/(g%pd"?)
dimensionless group 3: oT*/M = od/(gpd*) = 6/(gpd?)

R/(de)"S = H i
/( g) f(gQSpdl.S gde

or: &2 =f ”_2 _o
dg "~ \gp'd” gpd’

(b) The final shape of the drop as indicated by its diameter, d, may be obtained by using
the argument in (a) and putting R = 0. An alternative approach is to assume the final shape
of the drop, that is the final diameter attained when the force due to surface tension is equal
to that attributable to gravitational force. The variables involved here will be: volume of
the drop, ¥; density of the liquid, p; acceleration due to gravity, g, and the surface tension
of the liquid, o In this case: d = f(V, p, g, 0). The dimensions of each variable are: d =L,
V=L p=M/L? g=L/T? o=M/T> There are 5 variables and 3 fundamentals and hence
(5 - 3) = 2 dimensionless groups. Taking, as before, d, p and g as the recurring set. then:

d=L, L=d
PEM/L3 I\"[:pr:pd3
g=L/T’ . T'=L/g=d/g and T=d"/3"*

Dimensionless group 1. V/L* = ¥/d?

Dimensionless group 2: 6T*/M = ad/(gpd’} = o/ (gpd?)

B T S ORI
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3 - o
@) —f(gp dz]

Problem 1.7

Liquid is flowing at a volumetric flowrate Q per unit width down a vertical surface. Obtain
from dimensional analysis the form of the relationship between flowrate and film thickness.
If the flow is streamline, show that the volumetric flowrate is directly proportional to the
density of the liquid.

Solution

The flowrate, Q, will be a function of the fluid density, p, and viscosity, g, the film
thickness, d, and the acceleration due to gravity, g,

or: O=flp g udy or: 0=Kp* gbp‘dd where K is a constant.

The dimensions of each variable are: 0= L*/T, p=M/L%, g=L/T>, p=M/LT and d=L.
- Equating dimensions:

M: O=a+c¢
L: 2=-3a+b-c+d
T —-l==2b-¢

from which, c=1~2b,a=-c=2b-1,andd=2+3a-b+c¢c
. =2+6b-3-b+1-2b=3bh

Q=K '.gb . u' . @

or glli):K(ngdj/y:)b and Qoo p' 22,
For streamline flow, Q e y7!
~I=1-2band $=1
Oplu=K(p'gd*/ud), Q= K(pgd*/p)
and Q 1s directly proportional to the density, p

Problem 1.8

Obtain, by dimensional analysis, a functional relationship for the heat transfer coefficient
for forced convection at the inner wall of an annulus through which a cooling liquid is
flowing.

Solution

Taking the heat transfer coefficient, A, as a function of the fluid velocity, density, viscosity,
specific heat and thermal conductivity, u, p, u, C, and k, respectively, and of the inside and
outside diameters of the annulus, 4; and 4, respectively, then:

h =f(“s dh d0| 225 va k)

The dimensions of each variable are: A =H/L’T®, u=L/T, d;=L, d,=L, p=M/L?,
u=M/LT, C,=H/M@, k =H/LTO. There are 8 variables and 5 fundamental dimensions
and hence there will be (8 - 5) =3 groups. H and # always appear however as the grouping
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H/6 and in effect the fundamental dimensions are 4 (M. L, T and H/#) and there will be
(8 ~ 4) = 4 groups. For the recurring set, the variables d;, x4, k and p will be chosen:

d=L, L =4
p=M/L’ M =pL’® = pd}
p=M/LT, T=M/Ly=pd}/dp=pdl/u

k=(H/8)/LT, (H/8)=KkLT = kd,pd?/u=kpd}/u
Dimensionless group 1: kL*T/(H/8) = hd pd} [ utkpd. [ ) = hd;/k
Dimensionless group 2: uT/L = upd*/ud; = dup/u
Dimensionless group 3: 4,/L = d,/d;
Dimensionless group 4: C,M/(H/8) = C,pd; /k(pd}/u) = Cou [k
hd/k = f(dup/u, Cop/k, do/d) which is a form of equation 9.86.

Problem 1.9

Obtain by dimensional analysis a functional relationship for the wall heat transfer
coefficient for a fluid flowing through a straight pipe of circular cross-section. Assume that
the effects of natural convection can be neglected in comparison with those of forced
convection.

It is found by experiment that, when the flow is turbulent, increasing the flowrate by a
factor of 2 always results in a 50% increase in the coefficient. How would you expect a 50%
increase in density of the fluid to affect the coefficient, all other variables remaining constant?

Solution

For heat transfer for a fluid flowing through a circular pipe. the dimensional analysis is
detailed in Section 9.4.2 and, for forced convection, the heat transfer coefficient at the wall
is given by equations 9.57 and 9.53 which may be written as:

hd/k = f(dup/u, Cpulk)
or hdlk = K(dup/u)" (Cpua k)™
/by = (sl uy)".
Increasing the fiowrate by a factor of 2 results in a 50% increase in the coefficient, or:
1.5=2.0"and n=1n 1.5/In 2.0 = 0.585.
Also: hs/h, = (pof o)
when (Pz/Pl).= 1.50, hy/hy = (1.50)*°% = 1.27 and the coefficient is increased by 27%
Problem 1.10

A stream of droplets of liquid is formed rapidly at an orifice submerged in a second,
immiscible liquid. What physical properties would be expected to influence the mean size
of droplet formed? Using dimensional analysis obtain a functional relation between the
variables.

Solution

The mean droplet size, d,,, will be influenced by: diameter of the orifice, d; velocity of the
liquid, u; interfacial tension, o; viscosity of the dispersed phase, u; density of the dispersed
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phase, p4: density of the continuous phase, p, and acceleration due to gravity, g. (It would
also be acceptable to use the term (py — o) g to take account of gravitational forces and there
may be some justification in also taking into account the viscosity of the continuous phase.)

On this basis: dy=f(d, u,0, 1 ps. pe: §)

The dimensions of each variable are: dp=L,d=L,u=L/T, o= M/T?, p=M/LT, p4 =
M/L? p.=M/L’, and g =L/T? There are 7 variables and hence with 3 fundamental
dimensions, there will be (T — 3) =4 dimensionless groups. The variables 4, u and o will be
chosen as the recurring set and:

d=L, L=d
u=sL/T. T=L/u=d/u
o=M/T>, M=o0T =0d"/i
Thus, dimensionless group 1: yLT/M = ud(d/w)/(cd*[i®) = pulc
dimensionless group 2: pgL*/M = pyd*/(cd* /1) = pydi’/o
dimensionless group 3: p.L*/M = p.d*/(cd*/ i) = pcdil/o
dimensionless group 4: gT*/L = g(d*/u))/d = gd /i’

and the function becomes: dy = f(uul 0, pydi’[o. p.di*/o, gd[ )

Problem 1.11

Liquid flows under steady-state conditions along an open channel of fixed inclination to the
horizontal. On what factors will the depth of liquid in the channel depend? Obtain a
relationship between the variables using dimensional analysis.

Solution

It seems likely that the depth of liquid, d, will depend on: density and viscosity of the liquid,
p and u; acceleration due to gravity, g; volumetric flowrate per unit width of channel, Q, and
the angle of inclination, 6, )

or. d=f(P’ M, 8, Qv 9)

Excluding 6 at this stage, there are 5 variables and with 3 fundamental dimensions there will
be (5 — 3) = 2 dimensionless groups. The dimensions of each variable are: d = L, p = M/L?,
pu=M/LT, g =L/T? Q@ =LYT, and, choosing Q. p and g as the recurring set:

0=L*T T=L¥YQ
g =L/T}? L=gT'=gLl'/Q%L’=0Yg L= QZ/J/gI/S and T = Q4/3/Qg2/3= Q1/3/gz/3
p=M/L" M=L%=(0Yg)p=0%/¢g

Thus, dimensionless group 1: d/L = dg'*/ 0*? or d’g/ 0?

dimensionless group 2: uLT/M = 1(0*"/g"*)(0"*/g*%/ Q*pg = u/ Qp
and the function becomes: d’g/Q% = f(u/Qp, 6)

Problem 1.12

Liquid flows down an inclined surface as a film. On what variables will the thickness of the
liquid film depend? Obtain the relevant dimensionless groups. It may be assumed that the
surface is sufficiently wide for edge effects to be negligible.
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Solution

This is essentially the same as Problem 1.11, though here a solution will be attempted by
equating indices.
If as before: d=K (& b g, Q% 6)

then, excluding @ at this stage, the dimensions of each variable are: d=L, p= M/L?, y=
M/LT,g=L/T? Q=LYT.
Equating dimensions:

M: O=a+b ()
L: 1=-3a-b+c+2d (i)
T: 0=-b-2c-d (iii)

Solving in terms of b and c,

from (i) a=-b5

from (iii) d=~-b-2c

and in (i) 1=3b-b+c-2b-dcor:c=~1/3 ~.d=2/3-b

Thus: d= K(p—b .”b'g—l/B. QZ.’B-b)

dg"|Q** = K (ulpQ)

dg/Q* = K (ulp QP (8 as before.

Problem 1.13

A glass particle settles under the action of gravity in a liquid. Upoen which variables would
you expect the terminal velocity of the particle to depend? Obtain a relevant dimensionless
grouping of the variables. The falling velocity is found to be proportional to the square of the
particle diameter when other variables are kept constant. What will be the effect of doubling
the viscosity of the liquid? What does this suggest regarding the nature of the flow?

Solution

The variables expected to influence the terminal velocity, u, of a glass particle settling in
a liquid are: particle diameter. d; density of the particle, p;; density of the liquid, p; viscosity
of the liquid. u and the acceleration due to gravity, g. In this case, 4 = f(d, p,, p, p, g). The
dimensions of each variable are: 4 =L/"} T, d=L, p;=M/L’, p=M/L’, u=M/LTé and
g =L/T? With 6 variables and 3 fundamental dimensions, (6 — 3) = 3 dimensionless groups
are expected. Choosing 4, p and g as the recurring set:

d=L, L=d
p=M/L3, M= pL’ = pd’
u=M/LT, T=M/ul = pd*/pd = pd*/u

Thus, dimensionless group 1: #yT/L = uypd?/ (ud) = uypd |y
dimensionless group 2: p,L’/M = p,d*/(pd*) = p,/p
dimensionless group 3: gT*/L = gp*d*/(p2d) = gp'd®/*

and: (wopd/p) = f (py] p, gptd* [ u?)

or: (wopd /1) = K(ps/ oY (g2 d> [ D)™
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When uy e d°, then 3n,— 1 =2 and n, = 1.

(uopd/p) = K(ps/ p)" (g o’ d’ [ 11?)
or: uy = K(ps/ pY"(d” pg/ )
and: U o< (1/w)

In this case, a doubling of the viscosity of the liquid will have the effect of halving the terminal
velocity of the particle. This suggests in fact that the flow is described by Stokes’ Law.

Problem 1.14

Heat is transferred from condensing steam to a vertical surface and the resistance to heat
transfer is attributable to the thermal resistance of the condensate layer on the surface.

What variables will be expected to affect the film thickness at a point?

Obtain the relevant dimensionless groups.

For streamline flow it is found that the film thickness is proportional to the one third power
of the volumetric flowrate per unit width. Show that the heat transfer coefficient would be
expected to be inversely proportional to the one third power of viscosity.

Solution

For a film of liquid flowing down a vertical surface, the variables influencing the film
thickness &, will include: viscosity of the liquid (water), u; density of the liquid, p; the flow
per unit width of surface, ¢. and the acceleration due to gravuy g Thus: §=f(u p. Q. 8)-
The dimensions of each variable are: §= L. p=M/LT, p=M/L?, 0= L*/T. and g=L/T>.
Thus with 5 variables and 3 fundamental dimensions, (5~ 3) = 2 dimensionless groups are
expected. Taking g, p and g as the recurring set, then:

g=M/LT, M=yulLT
p= M/Lf, M= pL? . pL = uLT, T= py/y L
g=L/T’ = p’L/p°L =y /p°L® - L= p/p% and L=p>/(p" "%

T=p gl u=pu"1(p" g
and: M = (121 pg)" (1" (p"°8*) = ul(pg)
Thus, dimensionless group 1. QT/L* = Q(u'"?/ (o )/ (u** /(s &) = ¢p/u
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dimensionless group 2: L = 5p2’3/(p ) or, cubing = 53p g/,u

(& P/ = f(QplW)

This may be written: (8 pglu®)y = K(Qp/p)"
For streamline flow, §e Q' or n= 1

(8°P’g/ i) = KQply, 8 = KQu/(pg) and &= (KQu/pg)"”

As the resistance to heat transfer is attributable to the thermal resistance of the condensate
layer which in turn is a function of the film thickness, then: & « k/& where & is the thermal




