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Preface

The origin of this book lies with Joe Varner, who in the mid-1990s
decided to develop a third edition of Plant Biochemistry, the highly
successful textbook he had edited with James Bonner 30 years earli-
er. Unfortunately, Joe died before the wheels could be put in motion.
Recognizing the need to maintain this important resource, the Amer-
ican Society of Plant Physiologists asked us to take on the project.
We agreed, but soon found the scope growing beyond the bounds of
a traditional biochemistry book.

Reflecting on the needs and future of the field, we concluded
that for a contemporary biochemistry textbook to be of maximal use,
it should present the biochemistry of plants in the context of rele-
vant elements of their physiology and cellular and molecular biolo-
gy. The ASPP leadership enthusiastically supported this concept, and
the plan was thus put in place.

We have organized Biochemistry and Molecular Biology of Plants
around the elements required for life: membranes, energy and meta-
bolism, and reproduction. The first four of the five sections of the
book follow this theme. The fifth section, however, represents a di-
version and extends relevant scientific fundamentals to environmen-
tal aspects of biochemistry and biotechnology—dynamic areas in
which the unique capabilities of plants are applied to solve contem-
porary societal problems.

The development and production of this book required the tal-
ent, expertise, and sustained effort of many individuals. We wish to
highlight the efforts of the contributors, who not only admirably in-
tegrated information from diverse fields in composing the chapters,
but also endured what seemed at times to be an unending series of
editorial suggestions and revisions to both text and artwork. Thanks
are in order to the able reviewers of the individual chapters; to the
ASPP publications staff—both full-time and free-lance; to Kimberly
Cline and Liz Burke, who coordinated the project from the Universi-
ty of California at Berkeley; and to the illustration and production
staff at /B Woolsey Associates.

We especially wish to acknowledge the outstanding contribution
of Kathleen Vickers, our developmental editor. We are indebted to
Kathleen not only for her perseverance and positive attitude in
meeting an endless array of deadlines, but also for her unfailing vig-
ilance to scientific accuracy and for her persistent efforts to integrate
diverse material to make a whole from many parts. It is difficult to
imagine completing this project without her.

Most important, we want to express appreciation to our wives,
Melinda, Barbara, and Frances, who during the past four years
not only tolerated the textbook, but came to accept it as a family
member.

Bob B. Buchanan
Wilhelm Gruissem
Russell L. Jones

March 31, 2000
Berkeley, California
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