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The first two sections of this chapter contain a brief review of

algebra. We then introduce the Cartesian coordinate system, which
allows us to represent points in the plane in terms of ordered pairs
of real numbers. This in turn enables us to compute the distance
between two points algebraically. This chapter also covers straight
. , ‘ lines. The slopé of a straight line plays an important role in the

study of calculus.

igure can beptadmd for wd”m?“'ln»}

poge 46, you will see how the manager of
sporting goods stare used sales figures from the

previous years to predict the sales level for next year.




4 1 m PRELIMINARIES

1.1 Precalculus Review |

FIGURE 1.1
The real number line

Sections 1.1 and 1.2 review some of the basic concepts and techniques of
algebra that are essential in the study of calculus. The material in this review
will help you work through the examples and exercises in this book. You can
read through this material now and do the exercises in areas where you feel
a little “rusty,” or you can review the material on an as-needed basis as you
study the text. We begin our review with a discussion of real numbers.

THE ReEAL NUMBER LINE

The real number system is made up of the set of real numbers together with
the usual operations of addition, subtraction, multiplication, and division.
Real numbers may be represented geometrically by points on a line. Such
a line is called the real number, or coordinate, line and can be constructed as
follows. Arbitrarily select a point on a straight line to represent the number zero.
This point is called the origin. If the line is horizontal, then a point at a conve-
nient distance to the right of the origin is chosen to represent the number 1.
This determines the scale for the number line. Each positive real number lies
at an appropriate distance to the right of the origin, and each negative real
number lies at an appropriate distance to the left of the origin (Figure 1.1).

Origin
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I o
»
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A one-to-one correspondence is set up between the set of all real numbers
and the set of points on the number line; that is, exactly one point on the line
is associated with each real number. Conversely, exactly one real number is
associated with each point on the line. The real number that is associated
with a point on the real number line is called the coordinate of that point.

INTERVALS

Throughout this book, we will often restrict our attention to certain subsets
of the set of real numbers. For example, if x denotes the number of cars
rolling off a plant assembly line each day, then x must be nonnegative—that
is, x = 0. Further, suppose management decides that the daily production
must not exceed 200 cars. Then, x must satisfy the inequality 0 = x = 200.
More generally, we will be interested in the following subsets of real
numbers: open intervals, closed intervals, and half-open intervals. The set of
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all real numbers that lie strictly between two fixed numbers a and b is called
an open interval (a, b). It consists of all real numbers x that satisfy the
inequalities @ < x < b, and it is called “open” because neither of its end
points is included in the interval. A closed interval contains both of its end
points. Thus, the set of all real numbers x that satisfy the inequalities a <
x = b is the closed interval [a, b]. Notice that square brackets are used to
indicate that the end points are included in this interval. Half-open intervals
contain only one of their end points. Thus, the interval [q, b) is the set of all
real numbers x that satisfy a < x < b, whereas the interval (a, b] is described
by the inequalities a < x =< b. Examples of these finite intervals are illustrated
in Table 1.1. :

Table 1.1 Finite Intervals

Interval Graph Example
Open (a, b) . + % (-2,1) ———t—t——+>x
a b 3-2-101 23
Closed [a, b] a '}, x [-1,2] _i (.') ] 2 x
Half-open (a, b] ; ;) x 4, 3] (:) ii ; 3 x
2
Half-open [a, b) ;* ; x [-4,3) 1.(-) 1 2 3 x
2

In addition to finite intervals, we will encounter infinite intervals. Exam-
ples of infinite intervals are the half lines (a, »), [a, ®), (=, a), and (—, a]
defined by the set of all real numbers that satisfy x > a, x = a, x < a, and
x =< a, respectively. The symbol «, called infinity, is not a real number. It is
used here only for notational purposes in conjunction with the definition of
infinite intervals. The notation (—, ) is used for the set of all real numbers
x since, by definition, the inequalities —o < x < o hold for any real number
x. Infinite intervals are illustrated in Table 1.2.

Table 1.2 Infinite Intervals

Interval Graph Example

(a, ©) - x (2, =) f 1
a 0 1 2

[a, 00) t X [_11 °°) f $ X
a - 0

(==, a) ’ # (=, 1) — x

a 0 1
(—, a] 3 x (=, —4] t t t x

[CSE. 9
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Properties of Inequalities

EXAMPLE 1

SOLUTION v

PROPERTIES OF INEQUALITIES

In practical applications, intervals are often found by solving one or more
inequalities involving a variable. In such situations, the following properties
may be used to advantage.

Similar properties hold if each inequality sign, <, between a and b is replaced
by =, >, or =.

A real number is a solution of an inequality involving a variable if a true
statement is obtained when the variable is replaced by that number. The set
of all real numbers satisfying the inequality is called the solution set.

Find the set of real numbers that satisfy —1 <= 2x — 5 < 7.

Add 5 to each member of the given double inequality, obtaining
4=u%<12
Next, multiply each member of the resulting double inequality by 1/2, yielding
2=x<6

Thus, the solution is the set of all values of x lying in the interval [2, 6).
| R &



EXAMPLE 2

SOLUTION ¢+

Absolute Value

FIGURE 1.2
The absolute value of o number
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The management of Corbyco, a giant conglomerate, has estimated that x
thousand dollars is needed to purchase

100,000(—1 + V1 + 0.001x)

shares of common stock of the Starr Communications Company. Determine
how much money Corbyco needs in order to purchase at least 100,000 shares
of Starr’s stock.

The amount of cash Corbyco needs to purchase at least 100,000 shares is
found by solving the inequality

100,000(—1 + V1 + 0.001x) = 100,000

Proceeding, we find

-1+V1+0.001lx=1
V1+0.001x =2

1+0.001x=4 (Square both sides.)
0.001x=3
x = 3000

so Corbyco needs at least $3,000,000. TIT

ABSOLUTE VALUE

Since —a is a positive number when a is negative, it follows that the absolute
value of a number is always nonnegative. For example, |5| = 5 and |-5| =
—(—5) = 5. Geometrically, |a| is the distance between the origin and the point
on the number line that represents the number a (Figure 1.2).

|'~15>——|sISI——i | |-—lal-|-7lav—-|
t + +—>x t t +—>x
-5 0 5 -a 0 a

(a) (b)



