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Preface

One of the most efficient methods in physics is based on the discussion of the
symmetry of a physical system. Group theory and, in particular, representation
theory are the mathematical tools for handling the symmetries of such a system.
Of course, these fundamental ideas have not changed since the first edition of
this book. Only the applications have been extended to new systems and are
permanently expanding. Quasicrystals are very new systems in solid-state physics
and are discussed in Appendix I. On the other hand, in particle physics, super-
symmetry theories have been developed, which combine bosons and fermions.
This means that in a study of corresponding models, there is a need for anti-
commutators (Grassmann algebra) as well as for commutators (Lie algebra).
Since these theories are still being developed and since a discussion of the detatls
would go far beyond the scope of this book, we only give some indications in
Appendix J.

Other changes are only related to the correction of minor errors or misprints.
Often-used symbols and abbreviations are listed in Appendix K.

As already mentioned in the Preface to the First Edition, a short version of
the solutions to the exercises may be obtained from the authors.

We thank Prof. Dr. M. Stingl for some advice, Mrs. Schockmann for prepar-
ing the manuscript, and especially Dr. H. Lotsch of Springer-Verlag for his good
cooperation.

Miinster, October 1995 W. Ludwig - C. Falter
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Preface to the First Edition

The majority of physical systems exhibit symmetries of one kind or another.
These symmetries can be used to simplify physical problems (indeed, some-
times a result cannot be achieved in any other way) and also to understand and
classify the solutions. The mathematical tools required for this, ie. group
theory, and in particular representation theory, together with their applications
to physical problems, were treated by us in a series of seminars and lectures,
which now form the basis of this book.

Our main objective is to prepare the necessary mathematical foundations
so that they can be used in physics. Most statements are illustrated by ex-
amples, which are in many cases simple but occasionally more complicated
(especially in connection with space groups). The method of symmetry projec-
tions is applied more widely than in most texts of a similar standard, but
because this method is a suitable and powerful tool for the systematic reduc-
tion of representation spaces to irreducible spaces, and thus for the determina-
tion of the eigenstates of the system, it deserves to be better known. This
theory finds applications in many areas of physics in which symmetry plays
a role. We consider finite, discrete symmetries as well as continuous symmetries
and also symmetry breaking, with examples taken from atomic, molecular,
solid-state and high-energy physics.

This text is intended mainly for students who have attended basic courses
in physics and for researchers working in physics. However, the occurrence of
symmetry properties is by no means restricted to physics, so this book should
also be useful for people primarily interested in other subjects such as
chemistry and physical chemistry. Many problems are included in the text as
exercises; a booklet of solutions may be obtained from the authors.

We are very grateful to Dr. W. Zierau, who gave us much good advice, and
to K. Stroetmann, H. Rakel and J. Backhaus for help in preparing the manu-
script, the subject index and in proofreading. We are especially indebted to Dr.
H. K. V. Lotsch of Springer-Verlag for encouragement and cooperation and to
Miss D. Hollis, who improved the style of our sometimes rather “German”
English. ’

Miinster, October 1987 W. Ludwig - C. Falter
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1. Introduction

Physical systems in general possess symmetry properties. An essential point in
the discussion of such systems is to find the relevant symmetries and to classify
the properties or the states of the systems with respect to these symmetries. Group
theory provides the mathematical tools for the description of symmetries. Within
representation theory, methods are developed that allow classification of the
physical states of a system with respect to the irreducible representations of the
symmetry group.

The symmetries may be of very different natures for different types of objects
such as particles (elementary particles, atoms, molecules), many-particle systems
(crystals, liquids, fluids), all kinds of fields and macroscopic bodies.

We may distinguish between universal and special symmetries. Examples of
universal symmetries are the space-time symmetries of systems, that is, the invari-
ance of equations with respect to Poincaré or Lorentz transformations. In
many-particle systems, the symmetry with respect to an interchange (permuta-
tion) of identical particles is universal. The charge and gauge symmetries of fields
also belong to this group of symmetries. In quantum field theory the symmetries
may be discrete as well as continuous. Well-known examples of discrete sym-
metries are the invariances under CPT transformations. The continuous sym-
metries may be divided into those that do not depend on space-time coordinates
(first kind) and those that do (second kind). Invariance of a field theory under
gauge transformations of the first kind leads to conservation laws. The number
of these laws is equal to the number of parameters involved in the transformation.
In the second kind of transformations (local gauge transformations) the parame-
ters depend on the coordinates. Invariance of the theory under such transforma-
tions gives rise, in addition to the conservation laws, to interacting fields in the
Lagrangian density of the particle fields. Examples are the electromagnetic field,
the Yang-Mills fields, and also the gravitational field. Symmetries of this type
are also called dynamical symmetries. In these cases the interaction is determined
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by symmetry. On the other hand, the symmetry of an interaction is not always
obvious and can only be seen from the phenomena caused by it.

Special symmetries are often of a geometrical nature. Then there are a number
of symmetry operations that transform the physical system into itself (spatially).
Crystalline symmetries, for example, belong to this category. The number of such
operations is finite (or at least enumerable) in general.

The invariance properties of physical systems in space and time, as well as
gauge invariances, define the physically conserved quantities, that means observ-
ables like momentum, energy, angular momentum, and charges. These quantities
then obey conservation laws. This is one of the reasons why symmetry is so
important in physics.

In this book, using group theoretical methods we discuss the connection
between symmetry and the physical state and show how to simplify a physical
problem by using a “given” symmetry. The most important tool in this respect
is the representation theory of groups; with its help we can define projectors
allowing determination of the symmetry-adapted states. Another essential theo-
rem is that of Wigner and Eckart. It allows statements on matrix elements and
transitions, especially in connection with the representation of tensor operators.

In Chaps. 2-10 we consider groups with a countable (discrete, mainly finite)
number of elements. This comprises the geometric symmetry groups whose
operations leave the distances between two points and the angles between two
directions invariant. Apart from this, permutation groups belong to this category,
and also further symmetries that sometimes occur in physics.

In the second part (Chaps. 11-14), we discuss continuous symmetry groups
and the Lie algebras corresponding to them. Most universal symmetries are
included in these groups. Because of the limited size of this book, the essential
statements have been explained with the &% (n) groups, however, a transfer of
methods and procedures to other groups in general is possible without difficulty.
In the appendix we discuss the Lorentz group, which has infinite-dimensional
unitary representations, as an example of a noncompact group.

As an application of the $%({n) groups we consider some aspects of modern
gauge theories. Whereas previously one used to start with phenomenological
equations, to investigate the interactions and then found the symmetries of the
system, we will follow the recent development where one starts with a possible
symmetry group for the gauge transformations and the gauge invariance then
determines the form of the field equations and the interactions. Thus, in the devel-
opment of physics it was of no special importance that the system “charged
particle~electromagnetic field” is gauge invariant (under an Abelian gauge trans-
formation). But having realized this fact, one can look to see what other gauge-
invariant theories are possible if the conserved quantities (“charges”) have been
previously specified. This leads to new, non-Abelian gauge groups and new inter-
acting fields that couple to the “charges” of the particles. The procedure therefore
is the following. One has to look for the “charges” as the conserved quantities,
from these one can derive the corresponding gauge invariance of the first kind.
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The corresponding gauge invariance then specifies field Lagrangians and inter-
acting fields. The principles of these theories are discussed with some examples
in Chap. 14, without claiming to be complete.

For an understanding of the theory of continuous groups, especially Chaps.
12 and 13, the results of Sect. 5.5 are necessary. However, this comparatively
difficult section is dispensable for many problems in connection with point and
space groups; for these the considerations in Sect. 6.1 are sufficient.

To keep the size manageable we had to restrict ourselves in other respects.
Mathematical proofs are given explicitly only as far as they are necessary for an
immediate understanding. In many cases they are “simple™ enough to be done
in the form of an exercise. Thus the reader is strongly advised to solve the
exercises; sometimes they are indeed necessary for a handling of the mathematics.
In our opinion it was essential to develop the mathematical theory in such a way
as to allow direct application to physical problems. Thus statements and theo-
rems are always illustrated with definite examples; then the methods can be
immediately transferred to other problems.

One main aim is to show that group theory makes it possible to treat
problems from all parts of physics (and molecular chemistry), from classical
mechanics to quantum field theory, due to the symmetry inherent in physical
systems. Indeed, for many physical theories developed during recent decades,
group theory is the central key. In order to demonstrate this we have chosen
examples from solid-state as well as molecular physics, including electronic as
well as vibrational spectra, and also examples from atomic, nuclear and ele-
mentary particle physics. The physical background and the basic relations of the
different topics are assumed to be known.

In the applications we often have to use the irreducible representations of the
group elements. It was not possible here to give all the irreducible representations
of space groups explicitly. For this we have to refer to the existing books of tables,
but at the same time we have to state that many things have been tabulated only
incompletely. Then the reader has to calculate the irreducible representations,
the reduction coefficients, the Clebsch-Gordan coefficients, etc., by himself. The
methods are given.

The notation has been standardized in many respects. Where this is the case,
we have adapted the generally accepted notation. But there are some fields (e.g.
space groups) where several different notations are used. In such cases we had
to choose. But the correspondence between different notations can always be
established by comparing the definitions. The tables in the Appendix (especially
in Appendix A) always allow a comparison.
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Most groups which are essential in solid-state physics are finite groups, or at
least can be looked upon as being finite; this is the case for the translation group
of lattices. Therefore we first have to explain the concepts of the abstract theory
of finite groups. This is done in this first section, where we give the basic notations
and their relations. All this is illustrated by a simple example.

2.1 Symmetry and Group Concepts: A Basic Example

As an introductory example, we consider an equilateral triangle to which we
additionally assign a set of points 1 to 6 (Fig. 2.1). The basic concepts will be
illustrated by means of this example, which represents the symmetry of an NH,
molecule.

The triangle and the set of points are transformed into themselves if the
system is rotated about the centre of the triangle by multiples of the angle 27/3.
The axis of rotation, perpendicular to the plane of the triangle, is called a
threefold axis, since after three rotations (always through the basic angle 27/3)
the initial situation is restored. These symmetry operations about a threefold axis
are denoted by c3, ¢2, ¢3 =e, ..., where the rotation has always to be taken
counterclockwise (positive sense) and e is the identity operation (unit operation),
which does not move the triangle. Apart from these rotations, there are reflections
a,, 0,, 0, transforming the triangle into itself. These mirror planes contain the
threefold axis. We can illustrate the operations best with the mappings produced
by them.

e: points and triangle are invariant (do not move)
c3:l1>3-5-1; 254-56-2; A-B-C—A4.
c3:1-5-3-1; 2565452, A-C->B->4.

(2.1.1)
12 36 465 B C .
o.ler6; 265, 34 ; Ae—C .

; 263 ; Se6; A< B .
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Fig. 2.1. Arrangement of points, or triangle, having
%,, symmetry. a: threefold axis; o,, o), o;: mirror
planes containing the rotation axis

Table 2.1. The composition (group) table of the symmetry
operations of the triangle in Fig. 2.1

b e s c? a, a, a
a
e e s c} a, o, o]
s cy c3 e oy o, a,
I C§ e & 9 o g
a, o, 4 o) e cy c3
a, a, o) a, 3 e ¢y
a, o) a, a, Cy c3 e

With this scheme the effect of successive symmetry operations is also easily
depicted; we define the operation in the rightmost position to be performed
always first, the operation second from the right, second, and so on. The execu-
tion of two successive operations is called the product (operation), e.g. a,c;.
Generating the corresponding image of o, c;, we realize that this is identical with
that of o,, i.e. 6,c3 = g,. Accordingly, we find every product of the elements in
(2.1.1) to be contained in the set {e,c;,c3,0,,0,,0,}. We further realize that the
products are not always commutative; for example, c;0, = o,. For every operation
there obviously exists a reciprocal or inverse operation denoted by c3!, 6, and
so on. Clearly,

et=e, c'=c3, (YD '=ct=c;, ol=gq,, et

2.1.2)

The general behavior in constructing products is represented by the so-called
composition (multiplication, group) table of (a- b) (Table 2.1). We find that in each
row and each column of the table every element of the set occurs exactly once.
In addition, the inverse elements are readily specified: b and a are inverse to each
otherifa-b =e.
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Obviously this example is the geometric realization of a mathematical struc-
ture, which is called a group:

Formally, a pair (%, -) with a set %4 of elements and a composition *
defines a group if

1) there exists an internal composition law - on %;
2) for every pair of elements (a,b) there exists exactly one element
ce¥% withc=a-b;
3) the composition law is associative: (a-b):c = a-(b-c);
4) there exists an identity (unit) element witha-e = aforeveryae %,
5) forevery element a € % there exists an inverse (reciprocal) element
in¥ witha-a™! =e (2.1.3)

A group is completely defined by its composition table. In our case, composition
means the execution of successive operations also denoted as multiplication and
written a- b or simply ab. If all the multiplications in a group commute, it is an
Abelian group or commutative group. The group table is then symmetric with
respect to the principal diagonal. Conditions (2.1.3) require only the existence of
a right-identity and right-inverse element. However it follows immediately that
these are also left-identity or left-inverse elements as

alta= (a*l . a).(a—l .(a—l)—l) =q7! (a- a—l).(a—l)—l
=al @Y '=¢ (2.1.4)
and

ea=(@a')ya=a(@'a)=ae=a. (2.1.5)

Similarly it follows that identity and inverse elements are unique. For, ife and f
are both identities, then

—ef=f

because of (2.1.5) and if ™! and @ are both inverse elements, then
d=ad(aaY={@a-a't=ea'=at.

The inverse of a product is given by
(ab)ytaby=e-(@abtra=bt—(abt=>5b"1at. (2.1.6)

Any nonempty subset of ¥ satisfying (2.1.3) with the same composi-
tion law is called a subgroup U < %. (2.1.7)

Every group & possesses % = % and % = {e} as trivial subgroups. If more exist,
we speak of nontrivial or proper subgroups.
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The group described by (2.1.1,2) and Table 2.1 is denoted by

€, = {e,c3,¢3,0,,0,,0]} . (2.1.8)
Subgroups of €, are, for example,

€, = {e,c3,c3} and 6, ={eo0,} . 2.1.9)

The group %;, is non-Abelian, but €, and %, are Abelian. The subgroups can be
seen directly from the multiplication table; they form a closed set with respect to
the composition law.

The triangle, or the set of points, in Fig. 2.1 can also be mapped onto itself
by other operations. For example the reflections o, can be replaced by twofold
rotations c,, c5, ¢;, which are rotations by 2n/2 = n about axes lying in the plane
of the triangle. The group table does not change formally. Such groups, in which
elements and multiplications can be mapped uniquely one to one, i.e. the group
table remains unchanged, are called isomorphic groups. There are further groups
isomorphic (=) to €;, which will be described later. Isomorphic groups can
express different physical systems (Sect. 3.1). The group containing one threefold
main axis and three twofold axes perpendicular to the threefold axis (angle n/3
between the twofold axes) is called the dihedral group

%5 ={e,c3,c3,cq,¢5,¢5) . (2.1.10)
It is isomorphic to €;,:
2y =6, . (2.1.11a)

Starting with an arbitrary given point (e.g. point 1 in Fig. 2.1), we can produce
the set of points in Fig. 2.1 by applying special symmetry operations one or more
times. In the examples these operations are p = ¢, and g =0, or c¢,. Such
elements are called generating elements or simply generators of the group. Ele-
ments of a group ¥ are called generators if any element of ¢ can be represented
by finite products of these generators. The choice of generators is not a unique
one. We could also choose alternatively g = g, or ¢} or g, or c¢;. Sometimes it is
useful to take more generators than necessary. Any group with a finite number
of elements possesses a minimal system of generators, which is called the basis
of the group. The number of elements in the basis is the rank of the ( finite) group.

As an example we consider a group defined by two generators p and g with
the generating relations

pPP=e; g¢'=e; (gpP=e. (2.1.12)
The group then contains the elements

Gs = {e,p,p*,q,9p.qP"} . (2.1.13)



