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Preface

This book is an introduction to braid foliation techniques, which is a theory
developed to study knots and links and related surfaces in 3-manifolds, and
which from its inception has been intimately related to contact topology.
The original idea of braid foliation techniques is due to Daniel Bennequin,
who in the early 1980s first used a preliminary version of them to study
transverse links and contact structures on R?. and established the existence
of non-contactomorphic contact structures on R*. In the 1990s Joan Bir-
man and William Menasco developed and systematized the theory of braid
foliations, and in a series of papers spanning over ten years they used these
techniques in R? and S% to probe the landscape of closed braids representing
topological link types, with their work culminating in the Markov Theorem
without Stabilization and accompanying applications to the study of link
types whose transverse classification is non-trivial. A number of researchers
have since applied braid foliation techniques in new ways to solve foun-
dational problems in braid theory and contact topology. most notably in
Ivan Dynnikov and Maxim Prasolov’s proof of the Legendrian grid number
conjecture and the generalized Jones conjecture. Along the way, Tetsuya
[to and Malyutin-Netsvetaev discovered interesting interplay between braid
foliations and Dehornoy’s ordering of braids; furthermore, Ito and Keiko
Kawamuro have recently extended the bulk of braid foliation techniques
to arbitrary closed 3-manifolds supported by open book decompositions,
terming this new generalized theory that of open book foliations.

We therefore believe that braid foliation techniques can be a highly useful
implement in the toolbox of low-dimensional geometric topologists, and we
have endeavored to present an accessible and detailed introduction to the
theory in this book, including all of the above applications of braid foliation
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techniques. The primary audience that we have in mind is graduate students
in geometric topology. but we hope that this work will also prove useful
to the more experienced researcher as well. Rather than present all the
details of braid foliation techniques at the outset. and overwhelm the reader
with meaningless detail. we have constructed the book so that each chapter
centers around a key theorem or collection of theorems, and the particular
braid foliation techniques needed to prove that theorem are introduced in
parallel, so that the reader has an immediate “take-home™ for the techniques
involved. The book does not need to be read entirely linearly, but we do
recommend that the reader new to the subject read Chapters 2 and 3 in
detail, as these two chapters form the core of braid foliation techniques.
Following these chapters, the reader interested in transverse links in the
standard contact structure may turn to Chapters 4, 5. 6 and 7; the reader
interested in Legendrian links, including the work of Dynnikov and Prasolov
and relations of braid foliations to convex surface theory, can skip ahead to
Chapters 8., 9, and 12; those interested in studying braids algebraically can
turn to Chapter 10; and the reader interested in Ito and Kawamuro’s theory
of open book foliations can proceed to Chapter 11.

An exercise section has been included at the end of each chapter, and we
encourage the student to take time to work through these exercises before
proceeding to the next chapter. Braid foliation techniques are highly visual.
and we have therefore freely included figures throughout the book that will
hopefully help the reader gain his or her own insight into the theory. We have
also tried to point the reader to other powerful tools which can be used to
solve similar problems to those addressed here, most notably, characteristic
foliation and convex surface theory techniques of Emmanuel Giroux and Ko
Honda, knot Floer homology theories of Peter Ozsvath and Zoltan Szabo,
and knot contact homology techniques of Lenny Ng. In fact there are still
open questions of how best to understand braid foliation techniques in the
context of these other theories, which we encourage the interested reader
and researcher to pursue.

One final comment: We emphasize that throughout the book our links
will be oriented and smooth, and our ambient isotopies will be smooth. This
will allow us to have well-defined notions of transversality, and utilize stan-
dard applications of Sard’s theorem involving regular projections and general
position. At times, however, we will find it very useful to employ various
piecewise-lincar approximations of our smooth links to organize combinato-
rial arguments. At the outset, therefore, we note that these piecewise-linear
approximations will always have a smooth link close by, to which we are
actually performing smooth isotopies.
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Chapter 1

Links and closed braids

The primary low-dimensional topological objects of interest throughout this
book will be oriented 1-, 2- and 3-manifolds and specific topological (and
at times geometric) relationships amongst them. In this first chapter we
begin with closed oriented 1-manifolds embedded in the 3-sphere and we
establish what it means to study these objects as closed braids. The central
theorem for this chapter will be Alexander’s theorem [Ale23|, which shows
that every link can be braided via an isotopy; we will present two proofs
of this theorem, as well as discuss a number of useful ways to visualize and
organize links and braids.

1.1. Links

An oriented link of m components in S is a smooth embedding of m disjoint
oriented circles into the 3-sphere, and two links Ly and L; are said to be
in the same link type £ if there is a smooth isotopy of embedded links L;
(t € [0,1]) connecting them. It is standard to view S? as the one-point
compactification of R* and to alternatively think of this isotopy L;., and the
accompanying links, as being in S® or R?; see for example [Rol90]|. We will
adopt this approach throughout this book.

An important theorem, which we will state without proof here (see
[Rei74] for example) is the following:

Theorem 1.1. Two links Lo and Ly are isotopic in R via an isotopy Ly
fort € [0,1] if and only if there is an ambient smooth isotopy ¢y : R® — R3
of R?® such that Ly = ¢¢(Lo) for all t € [0,1].

Links in S3, and for that matter links in general 3-manifolds, stand as
important building blocks in low-dimensional topology: for example, any

1



2 |. Links and closed braids

(a) (c)
Figure 1. A regular projection of the Borromean rings, and examples
of a positive and negative crossing.

closed oriented 3-manifold can be constructed via surgery on a link in S®
[Lic97], and since S® is the boundary of the 4-ball B*, links can also be
used to construct 4-manifolds [Kir89]; the complements of links can yield
important examples of hyperbolic 3-manifolds [Thu82]; links can bound
embedded surfaces which provide interesting fibrations of S* [Rol90]; and
links provide an important way to construct quantum field theories in high-
energy physics [Ati90].

Since all of the above constructions will yield identical results for two
isotopic links, one basic question concerning links is determining whether
two links L and Lo in the same 3-manifold are isotopic or not. For this
purpose, a panoply of invariants of links has been identified, both classical
and modern, which provides numerous possible ways to distinguish between
two links L; and Ls which represent different link types £1 and L. Such
invariants assign some quantity (either a number, polynomial, group, graded
ring, vector space, etc.) to any given link, such that this assignment does
not vary when an isotopy of that link occurs. Examples include the genus
of a link, the unknotting number, minimal braid index, the fundamental
group of the complement of a link, various polynomial invariants such as the
Alexander polynomial, Jones polynomial and HOMFLYPT polynomial, and
categorifications of these in knot Floer homology and Khovanov homology.

Our focus in this book will not be to distinguish between links in distinct
isotopy classes, but rather to investigate the internal structure within a fixed
link type. As such, our primary goal will not be to work with the above
invariants. However, the interested reader who is familiar with the above



