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PREFACE

The first volume of Knowledge Engineering presents state-of-the-art reviews
and tutorials on fundamental aspects of knowledge engineering. The second
volume complements the first by presenting applications of applied artificial
intelligence (AI). The field of applied Al and knowledge engineering is very
young. Students usually must refer to numerous sources to learn the funda-
mentals of the subject. The two volumes attempt to present summaries of the
various subjects in a single document and are oriented toward practical appli-
cations. They are suitable as primary reference books in introductory courses
on applied Al and knowledge engineering.

Leading and internationally recognized researchers have contributed to
these volumes. We hope this effort becomes a continuing book series with fu-
ture volumes concentrating on other aspects of knowledge engineering and
new applications of Al.

Hojjat Adeli
Editor
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CHAPTER

1

INTEGRITY
CONSTRAINTS IN
KNOWLEDGE-BASED
SYSTEMS

JOHN GRANT
JACK MINKER

1 INTRODUCTION

A database system is a system used for the storage and manipulation of facts.
Deductive database and knowledge-based systems can be used for the storage
and manipulation of knowledge that consists of facts and rules. We distinguish
between a deductive database and a knowledge base by allowing function sym-
bols in the latter but not in the former. An expert system may then be defined
as a meta-interpreter over a knowledge base or deductive database that pro-
vides facilities such as a natural language interface or an explanation of the
reasoning used in obtaining answers.

Both database and knowledge-based systems include integrity con-
straints, which are statements that must be satisfied by the database or the
knowledge base. Much of the literature about knowledge-based systems em-
phasizes the facts and rules but deals with integrity constraints as a minor mat-
ter. In fact, the knowledge-based systems of today consider the facts and rules
as the knowledge base. Our point of view is quite different: we consider integ-
rity constraints as the essence of knowledge for a knowledge-based system.
The reason is that the inclusion of integrity constraints provides semantic in-
formation about the data in the database. This semantic information more pre-
cisely defines what may exist in the database.

Consider the following example. In a deductive database, it is possible to
write a rule to define a grandparent in terms of parent as follows: X is a grand-
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2  KNOWLEDGE ENGINEERING: APPLICATIONS

parent of Y if X is a parent of Z and Z is a parent of Y. In a geometric data-
base, a syntactically identical definition can be given for parallel lines in terms
of perpendicular lines. That is, X is parallel to Y if X is perpendicular to Z and
Z is perpendicular to Y. However, in the first case, there is an integrity con-
straint on parents: any individual may have no more than two parents. There is
no corresponding integrity constraint for perpendicular lines. Thus, semantic
considerations may distinguish between syntactically identical facts and rules.

The theme of this chapter is the application of knowledge, in the form of
integrity constraints, to problems as diverse as update validation, query opti-
mization, and informative answer generation. Researchers have previously de-
veloped special-purpose methods, using integrity constraints, to study these
problems individually. Some of these will be reviewed later in the proper con-
text as we describe each topic. Our emphasis will be on the presentation of a
unified framework for representing the interaction of integrity constraints with
the facts and rules of the knowledge base and on showing how this approach
provides solutions to those problems.

Section 2 contains a formal definition of a knowledge-based system. We
use the language of first-order logic to describe the contents of a knowledge-
based system. First-order logic provides a very useful formalism for dealing
with knowledge-based systems, because it is a uniform language for expressing
facts, rules, integrity constraints, and queries. The uniform technique used in
this paper for the application of integrity constraints in knowledge-based sys-
tems is called partial subsumption. Section 3 contains a description of this
method. In a knowledge-based system, partial subsumption of the integrity
Constraints can be performed at an initial stage, before the processing of que-
ries and updates. The result of partial subsumption is a set of residues that are
then attached to the predicates and are used for various purposes during data
manipulation.

The topic of Section 4 is update validation. This was, in fact, the initial
and primary reason for the introduction of integrity constraints into database
systems. Whenever a database is updated, the integrity constraints must re-
main true. This concept carries over to knowledge bases. We will show in this
section how the generation of residues from the integrity constraints facilitates
the validation of updates.

A query optimizer chooses a sequence of operations that translate the
original query into an efficient program. Traditional query optimization uses
the properties of various relational operators and the physical representation
of data such as sizes of tables and indexings but does not use semantic knowl-
edge about the application domain, that is, the integrity constraints. In Section
5 we show how semantic query optimization, that is, the optimization of query
translation by the use of integrity constraints, can be applied to knowledge-
based systems.

A knowledge-based system should respond to a questioner in an intelli-
gent and cooperative manner. In Section 6 we will show that integrity con-
straints, via the residues, are highly useful in providing a knowledge-based
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system with a cooperative and informative answer. In particular, integrity con-
straints often provide the reason for the answer to a query. Communicating the
reason for the answer to the user may be much more informative than the an-
swer by itself. The last section, Section 7, summarizes the chapter.

2 DEFINITION OF A KNOWLEDGE-BASED
SYSTEM

Since knowledge-based systems are commonly formalized in logic, we start
this section by providing some terminology and concepts of first-order logic.
For general information on the applications of logic to databases see Gallaire
et al. (1984). The syntax of first-order logic is based on a class of languages and
the formulas that may be written in these languages. Each language contains a
set of logic and non-logic symbols. The logic symbols are the same for each
language and contain variables, logical connectives and quantifiers, and punc-
tuation symbols; the non-logic symbols are constants, predicates, and func-
tions. The rules for constructing formulas are the same for all first-order lan-
guages.
The symbols of a first-order language are as follows.

1. Logic symbols:

Variables: x, y, z, x1, y1, z1,...(infinitely many)
Connectives: = (not), \/ (or), & (and), — (implies)
Quantifiers: V (for all), 3 (there exists)
Punctuation: parentheses and comma

Equality: =

2. Non-logic symbols:

Constants: a, b, c, susan, prof,...(as many as needed, possibly 0)
Predicates: P, R, Teach,...(at least one)
Functions: f, g, plus,...(as many as needed, possibly 0)

The presence of functions distinguishes knowledge-based systems from deduc-
tive database systems. Thus, deductive database systems are a special (but im-
portant) case of knowledge-based systems.

The symbols of a language are combined in a standard way to produce
terms and formulas. We refer the reader to standard books in logic (Enderton,
1972; Mendelson, 1978) and theorem-proving (Chang and Lee, 1973;
Loveland, 1978) for details. As is usual in work on theorem proving, we deal
primarily with clauses, where all variables are universally quantified and
which have the general form

— Al\/' . .\/ Bl Ak\/Ak+ 1\/. . .\/An
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where & = n and each A, is an atomic formula. We use a Prolog-like notation
where in most cases such a clause is written as

Ak+]9"-;An(—Al!""Ak

with the atoms A,,..., A, in the body and A,,,,..., A, in the head of the
clause. A ground clause contains no variables. A Horn clause has at most one
atom in the head, that is, K = n =< k + 1. A definite clause has one atom in the
head, thatis, n = k + 1. A clause is range-restricted if every variable that ap-
pears in the head also appears in the body. Range-restricted clauses are very
useful because their truth or falsity does not depend on the set of constants in
the language, only on the constants in the clause. A clause is recursive if a
predicate appears in both the head and the body.

The presence of recursive definitions gives great power to knowledge-
based systems over relational database systems. Consider a definition such as
the one for Ancestor in terms of Parent:

Ancestor(x, y) « Parent(x, y)
Ancestor(x, y) < Parent(x, z), Ancestor(z, y)

The second clause is recursive, and the simple query
< Ancestor(joe, x)

finds the ancestors of joe. However, Ancestor cannot be defined by using the
standard relational algebraic operations on Parent.

We mentioned earlier that clauses are usually written in such a way that
both the body and the head of a clause contain only positive atoms. However,
there are cases where it is useful to define rules using one or more negated
atoms in the body. For example,

Backordered(x) < Ordered(x),— Instock(x)

defines the predicate Backordered in terms of a negated atom in the head of
the clause.

While both recursion and negation in the clause body are important and
powerful concepts for knowledge bases, substantial problems may arise when
they are combined. Consequently, usually a limitation is placed on the combi-
nation of recursion and negation by not allowing recursive definitions via ne-
gation. For example,

P(x) < —10(x)
O(x) < P(x)

would not be allowed. The idea is that in defining a predicate, negation should
be applied only to already known predicates. That was the case for the defi-
nition of Backordered, as the Instock predicate was assumed to deal only with
facts. But in this case, Q does not have a prior definition as far as 2 is con-
cerned; in fact, O is defined in terms of P. A knowledge-based (or deductive
database) system that applies this restriction is said to be stratified [see Apt et
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al. (1988), Van Gelder (1988), and Przymusinski (1988) for the complete defi-
nition and many results about stratification].

Now we come to the definition of the knowledge base component of a
knowledge-based system. Not all of the restrictions that we give are essential
for our results, but these restrictions simplify the presentation and proofs of
results, and, in any case, most knowledge bases in practice either satisfy the
assumptions or can be transformed into such a form. A knowledge base
K = (TH, IC) consists of two components: a theory TH and a set of integrity
constraints IC. In this chapter we consider TH to consist of two distinct sets of
clauses and a metarule:

TH = (EDB, IDB, NFF)

EDB, the extensional database, is a set of ground atoms; these represent
the facts of the knowledge base. The predicates that appear in EDB are called
extensional predicates. IDB, the intensional database, is a set of deductive
laws (axioms) that are range-restricted Horn clauses that satisfy the property
of stratification. We also assume that no predicate is both intensional and ex-
tensional. NFF, negation as finite failure, is a metarule used for proving ne-
gated clauses as follows: If P is a ground atom, then TH+ — P if notTH + P),
that is, if all attempts to prove P terminate in failure. In order to handle equal-
ity correctly, we assume that TH also contains x = x < . Finally, in this chap-
ter we restrict IC to be a set of nonrecursive range-restricted clauses contain-
ing only extensional predicates.

A query is a conjunction of atoms, Q: Al &...& Ak. We write Q as
Qx1,..., xn) if x1,..., xn are all the variables in Q. An answer to ox1,...,xn)
is a sequence of constants, {al,..., an), such that TH } Nal,..., an), where
Q(al,..., an) stands for the simultaneous substitution of ai for xi in Q. This
definition carries over to the case where #n = 0; such a query is a yes-no ques-
tion.

We illustrate the notion of a knowledge-based system by providing an ex-
ample. This example has only a few predicates, no functions, no recursion,
and no negated atoms in the body, but it illustrates important concepts and
techniques that can be applied in a similar way to large and more complex
knowledge bases. First we write the extensional and intensional predicates and
provide the attributes for each. The attributes are not used specifically later,
but they are helpful in understanding the meaning of the predicates. We do not
actually write the facts in the EDB because typically the number of facts is
large. We also write each integrity constraint both as a clause and in English.

Example.
Extensional predicates:

Schedule(Teacher Name, Department Name, Course Number)
Registration(Student Name, Department Name, Course Number)
Catalog(Department Name, Course Number, Credits)
Instructor(Teacher Name)
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Intensional predicate:

Teacherof(Teacher Name, Student Name)

Extensional database:

Schedule, Registration, Catalog, Instructor

Intensional database:

Teacherof(x, y) <— Schedule(x, «, v),Registration(y, u, v)
Intensional constraints:

IC1. Baker teaches only history courses.

vy = hist « Schedule(baker, y, 7)

IC2. Course numbers in the computer science department are less than 600,

y < 600 « Catalog(cosc, y, 7)

IC3. No one is a teacher and a student for the same course.

<« Schedule(x, y, z), Registration(x, vy, z)

ICA4. Davis is registered only for economics courses.

¥y = econ < Registration(davis, y, z)

IC5. Every teacher’s name in the Schedule relation appears in the Instructor re-
lation.

Instructor(x) « Schedule(x, v, z)

3 PARTIAL SUBSUMPTION AND RESIDUES

In order to apply integrity constraints in knowledge-based systems, we use a
technique called partial subsumption. This method is applied to predicates be-
fore data manipulation. Partial subsumption yields fragments of integrity con-
straints, called residues, which are then attached to the predicates and are
used later during query processing and updates. The process of partial
subsumption, residue generation, and residue attachment to predicates is
called semantic compilation. This process can be performed at an initial stage
and need not be modified after standard data manipulation. Only changes to
the IDB or the IC would force a semantic recompilation. In this section we
define and illustrate semantic compilation. A formal treatment, including
proofs of theorems asserting the correctness of the process, may be found in
Chakravarthy et al. (1988).

Partial subsumption is a modification of subsumption, so we start with
the latter. Subsumption is a relationship between two clauses.
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Definition. A clause C subsumes a clause D if there is a substitution o such that
Co is a subclause of D. For example, if

C = R(X, b) (_P(x) y)’ Q(y! 2, b)
and

D = R(a, b) < P(a, 2), Oz, z, b), S(a)
then C subsumes D by the substitution {a/x, z/y}.

To understand partial subsumption, we need to look at the basic
subsumption algorithm in Chang and Lee (1973), testing to see if C subsumes
D. We explain this algorithm by illustrating its effect on the clauses C and D.
First, D is instantiated to a ground clause by using new constants, not present
in C or D. We will use k1,..., kn for these constants and call the substitution
0. Here, 0 = {k1/z}, so that

D0 = R(a, b) « P(a, k1), Q(k1, k1, b), S(a)
Then D8 is negated; — D8 is a set of literals. In this case,
1D8 = { < R(a, b), P(a, k1) < , Q(k1, k1, b) « , S(a) <}

Next, the algorithm tries to construct a linear refutation tree with C as the
root, using at each step an element of — D9 in the resolution. The result is that
C subsumes D if and only if at least one such refutation tree ends with the null
clause. Here we obtain the tree shown in Fig. 1-1.

The essence of partial subsumption is the application of the subsumption
algorithm to an integrity constraint and the body of an IDB clause (which de-
fines the intensional predicate). As we need to do this process for extensional
relations also, we write the trivial axiom R < R for each extensional relation,
strictly for the purpose of applying the subsumption algorithm in this manner.
In general, the subsumption algorithm does not yield the null clause, because the
integrity constraint does not subsume the body of the axiom. However, a
subclause of the integrity constraint might subsume the body of the axiom. This is

R{x,b) < P(x,y},Qly,z,b) < Rla,b)
[a/x]
< P{a,y),Qly,z,b) P(ak1) «
{k1/y)
+Q(k1,z,b) Q(k1k1,b) «
(k1/2]
FIGURE 1-1

- Linear refutation tree for subsumption.



