LUNOW LD G
NGINEERING

wi M

KNOWLEDGE ENGINEERING

Volume 11 APPLICATIONS

Hojjat Adeli, Editor

Department of Civil Engineering
The Ohio State University

McGraw-Hill Publishing Company

New York St. Louis San Francisco Auckland Bogotda Caracas
Hamburg Lisbon London Madrid Mexico Milan Montreal New Delhi
Oklahoma City Paris San Juan Sao Paulo Singapore Sydney Tokyo Toronto

This book was set in Times Roman by the College Composition Unit
in cooperation with Ruttle Shaw & Wetherili, Inc.

The editors were B. J. Clark and John M. Morriss;

the production supervisor was Leroy A. Young.

The cover was designed by Carla Bauer.

Project supervision was done by The Total Book.

R. R, Donnelley & Sons Company was printer and binder.

KNOWLEDGE ENGINEERING
Vol. 11, Applications

Copyright © 1990 by McGraw-Hill, Inc. All rights reserved. Printed in the

United States of America. Except as permitted under the United States Copyright Act
of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.

234567890 DOC DOC 9543210

ISBN 0-07-000357-2

Library of Congress Cataloging-in-Publication Pata

Knowledge engineering / [edited by] Hojjat Adeli.
p. cm.
Includes index.
Contents: v. 1. Fundamentals—v. 2. Applications.
ISBN 0-07-000355-6 (v. 1)—ISBN 0-07-000357-2 (v.2)
1. Expert systems (Computer science) 1. Adeli, Hojjat, (date).
QA76.76.E95K 577 1990
006.3°3—dc20 89-8338

EDITOR’S BIOGRAPHY

Currently professor of civil engineering at The Ohio State University, Hojjat
Adeli received his Ph.D. from Stanford University in 1976. He is the editor-
in-chief of the international journal, Microcomputers in Civil Engineering, and
the author or editor of nearly 200 research publications including several books
in the fields of knowledge engineering and expert systems, computer-aided de-
sign, parallel processing, mathematical optimization and simulation, applied
mechanics, and structural engineering. He is also the editor-in-chief of the
forthcoming Marcel Dekker book series New Generation Computing. The first
two volumes of series, Supercomputing in Engineering Analysis and Parallel
Processing in Computational Mechanics are scheduled for publication in late
1990. He is listed in twelve Who’s Who's and biographical listings including
Who’s Who in the World, Men of Achievement, and International Directory of
Distinguished Leadership.

CONTRIBUTORS

Ronald C. Arkin is an assistant professor in the school of information and com-
puter science at the Georgia Institute of Technology. He received his Ph.D.
from the University of Massachusetts in 1987. Between 1977 and 1985 he
taught at Hawthorne College in Antrim, New Hampshire, where he was rec-
ognized as the faculty member of the year in 1983, Dr. Arkin’s research inter-
ests are centered upon intelligent action and perception, particularly as evi-
denced by mobile robots and computer vision. He is listed in Who's Who in
the World, Who’s Who in the East, and Who's Who of Emerging Leaders in
America.

Thomas L. Dean received his Ph.D. from Yale University in 1986. He is cur-
rently an assistant professor in the department of computer science at Brown
University. His research interests include logic programming, deductive re-
trieval methods, and robot problem solving.

John Fox is head of the biomedical computing unit at the Imperial Cancer Re-
search Fund, London, United Kingdom. He is editor of The Knowledge Engi-
neering Review, an international journal. He has published extensively in the
area of decision theory and technology.

John Grant received his Ph.D. from New York University in 1970. He is cur-
rently professor of computer and information science at Towson State Univer-
sity and visiting professor of computer science at the University of Maryland.
He has published extensively in the area of databases and logic. He is the au-
thor of Logical Introduction to Databases, a textbook for advanced under-
graduates.

Gail E. Kaiser is an assistant professor of computer science at Columbia Uni-
versity. She received her Ph.D. from Carnegie Mellon University in 1986. She
was sclected as a U.S. National Science Presidential Young Investigator in
1988. Her research interests include programming environments, application

ix

X CONTRIBUTORS

of Al technology to software development and maintenance, object-oriented
languages and databases, and distributed systems.

Steven L. Lytinen is an assistant professor of electrical engineering and com-
puter science at the University of Michigan. He received his Ph.D. from Yale
University in 1984, where he wrote a knowledge-based machine translation
system. One focus of his research has been on the interaction of different lev-
els of linguistic knowledge in natural language analysis, and recently he has
begun extending this work to speech recognition. Other research interests in-
clude language acquisition and acquiring knowledge from instructions.

Jack Minker received his Ph.D. from the University of Pennsylvania in 1959.
He is currently a professor in the department of computer science and Institute
for Advanced Computer Studies at the University of Maryland. He is on the
editorial board of the Journal of Logic Programming, Information Systems,
IEEE Expert, Encyclopedia of Artificial Intelligence, Computing Reviews, Ex-
pert Systems: Research and Applications, International Series in Logic Pro-
gramming, and the Journal of Academic Proceedings of Soviet Jewry. He was
the first chair of the department of computer science at the University of
Maryland from 1974-1979 and served as chair of the Advisory Committee on
computing to the U.S. National Science Foundation from 1980-1982. He has
numerous publications in the areas of artificial intelligence, automated theo-
rem proving, deductive databases, and logic programming. He has edited sev-
eral books on deductive databases and logic programming, the most recent of
which is Foundations of Deductive Databases and Logic Programming.

Setsuo Ohsuga received his Ph.D. from the University of Tokyo in 1966. He is
currently a professor in the Research Center for Advanced Science and Tech-
nology at the University of Tokyo. He is now the vice president of the
Japanese Society for Artificial Intelligence. Professor Ohsuga is a regional ed-
itor of the journal of Knowledge-Based Systems. His research interests include
artificial intelligence, knowledge processing, databases, and CAD.

Mike G. Rodd received his B.Sc., M.Sc., and Ph.D. degrees from the Univer-
sity of Cape Town before joining the University of the Witwatersrand as pro-
fessor of electronics in 1978. He became head of the department in 1982. He is
currently head of the department of electrical and electronic engineering at the
University College of Swansea, Wales. He has published widely in the areas of
distributed computer control systems, real-time operating systems, computer
architecture, computer vision, and the social impacts of automation. He is
editor-in-chief of the international journal, Engineering Applications of Al

Spyros G. Tzafestas received his M.Sc. in automatic control from the Univer-
sity of London (Imperial College) in 1967. He received a Ph.D. in electrical
engineering and D.Sc. for his published work in the systems and control field
from Southampton University, England, in 1969, and 1978, respectively. From

CONTRIBUTORS xi

1973-1984, he was professor of systems and control engineering at Patras Uni-
versity, Greece. He is currently professor of computer science at the National
Technical University of Athens, Greece. He has published 12 books and over
200 technical papers. He is editor-in-chief of the Journal of Intelligent and Ro-
botic Systems, associate editor of three journals, and editor of the Reidel book
series Microprocessor-Based Systems Engineering. He is a fellow of IEEE
and the Institution of Electrical Engineers (United Kingdom), and vice presi-
dent of the International Association for Mathematics and Computers in Sim-
ulation. His research interests include distributed-parameter and large-scale
systems, reliability and maintenance optimization, fault detection, robotics,
and knowledge-based intelligent systems.

Larry Wos is a senior mathematician in the Mathematics and Computer Sci-
ence Division at Argonne National Laboratory. He has published extensively
on automated theorem proving and automated reasoning and has authored two
books on the subject. He is editor-in-chief of the Journal of Automated Rea-
soning and has been president of the Association for Automated Reasoning
since its inception in 1982. He (with a colleague) won the first awarded
American Mathematical Society Automated Theorem-Proving prize in 1983.

PREFACE

The first volume of Knowledge Engineering presents state-of-the-art reviews
and tutorials on fundamental aspects of knowledge engineering. The second
volume complements the first by presenting applications of applied artificial
intelligence (AI). The field of applied Al and knowledge engineering is very
young. Students usually must refer to numerous sources to learn the funda-
mentals of the subject. The two volumes attempt to present summaries of the
various subjects in a single document and are oriented toward practical appli-
cations. They are suitable as primary reference books in introductory courses
on applied Al and knowledge engineering.

Leading and internationally recognized researchers have contributed to
these volumes. We hope this effort becomes a continuing book series with fu-
ture volumes concentrating on other aspects of knowledge engineering and
new applications of Al.

Hojjat Adeli
Editor

xiii

CONTENTS

Contributors ix
Preface Xiii

Integrity Constraints in Knowledge-Based Systems

J. Grant and J. Minker 1
Symbolic Decision Procedures for Knowledge-Based

Systems

J. Fox 26
Applications of Automated Reasoning

L. Wos 56
Robot Problem Solving

T. Dean 84
Autonomous Mobile Robots

R. C. Arkin 116

Al Techniques in Computer-Aided
Manufacturing Systems
S. G. Tzafestas 161

Al Techniques in Software Engineering
G. E. Kaiser 213

Knowledge-Based Vision Systems
M. G. Rodd 245

Linguistic Knowledge and Automatic Speech
Recognition
S. L. Lytinen 277

vii

viii CONTENTS

10 Knowledge Processing and Its Application
to Engineering Design
S. Ohsuga

Index

300

341

CHAPTER

1

INTEGRITY
CONSTRAINTS IN
KNOWLEDGE-BASED
SYSTEMS

JOHN GRANT
JACK MINKER

1 INTRODUCTION

A database system is a system used for the storage and manipulation of facts.
Deductive database and knowledge-based systems can be used for the storage
and manipulation of knowledge that consists of facts and rules. We distinguish
between a deductive database and a knowledge base by allowing function sym-
bols in the latter but not in the former. An expert system may then be defined
as a meta-interpreter over a knowledge base or deductive database that pro-
vides facilities such as a natural language interface or an explanation of the
reasoning used in obtaining answers.

Both database and knowledge-based systems include integrity con-
straints, which are statements that must be satisfied by the database or the
knowledge base. Much of the literature about knowledge-based systems em-
phasizes the facts and rules but deals with integrity constraints as a minor mat-
ter. In fact, the knowledge-based systems of today consider the facts and rules
as the knowledge base. Our point of view is quite different: we consider integ-
rity constraints as the essence of knowledge for a knowledge-based system.
The reason is that the inclusion of integrity constraints provides semantic in-
formation about the data in the database. This semantic information more pre-
cisely defines what may exist in the database.

Consider the following example. In a deductive database, it is possible to
write a rule to define a grandparent in terms of parent as follows: X is a grand-

1

2 KNOWLEDGE ENGINEERING: APPLICATIONS

parent of Y if X is a parent of Z and Z is a parent of Y. In a geometric data-
base, a syntactically identical definition can be given for parallel lines in terms
of perpendicular lines. That is, X is parallel to Y if X is perpendicular to Z and
Z is perpendicular to Y. However, in the first case, there is an integrity con-
straint on parents: any individual may have no more than two parents. There is
no corresponding integrity constraint for perpendicular lines. Thus, semantic
considerations may distinguish between syntactically identical facts and rules.

The theme of this chapter is the application of knowledge, in the form of
integrity constraints, to problems as diverse as update validation, query opti-
mization, and informative answer generation. Researchers have previously de-
veloped special-purpose methods, using integrity constraints, to study these
problems individually. Some of these will be reviewed later in the proper con-
text as we describe each topic. Our emphasis will be on the presentation of a
unified framework for representing the interaction of integrity constraints with
the facts and rules of the knowledge base and on showing how this approach
provides solutions to those problems.

Section 2 contains a formal definition of a knowledge-based system. We
use the language of first-order logic to describe the contents of a knowledge-
based system. First-order logic provides a very useful formalism for dealing
with knowledge-based systems, because it is a uniform language for expressing
facts, rules, integrity constraints, and queries. The uniform technique used in
this paper for the application of integrity constraints in knowledge-based sys-
tems is called partial subsumption. Section 3 contains a description of this
method. In a knowledge-based system, partial subsumption of the integrity
Constraints can be performed at an initial stage, before the processing of que-
ries and updates. The result of partial subsumption is a set of residues that are
then attached to the predicates and are used for various purposes during data
manipulation.

The topic of Section 4 is update validation. This was, in fact, the initial
and primary reason for the introduction of integrity constraints into database
systems. Whenever a database is updated, the integrity constraints must re-
main true. This concept carries over to knowledge bases. We will show in this
section how the generation of residues from the integrity constraints facilitates
the validation of updates.

A query optimizer chooses a sequence of operations that translate the
original query into an efficient program. Traditional query optimization uses
the properties of various relational operators and the physical representation
of data such as sizes of tables and indexings but does not use semantic knowl-
edge about the application domain, that is, the integrity constraints. In Section
5 we show how semantic query optimization, that is, the optimization of query
translation by the use of integrity constraints, can be applied to knowledge-
based systems.

A knowledge-based system should respond to a questioner in an intelli-
gent and cooperative manner. In Section 6 we will show that integrity con-
straints, via the residues, are highly useful in providing a knowledge-based

INTEGRITY CONSTRAINTS IN KNOWLEDGE-BASED SYSTEMS 3

system with a cooperative and informative answer. In particular, integrity con-
straints often provide the reason for the answer to a query. Communicating the
reason for the answer to the user may be much more informative than the an-
swer by itself. The last section, Section 7, summarizes the chapter.

2 DEFINITION OF A KNOWLEDGE-BASED
SYSTEM

Since knowledge-based systems are commonly formalized in logic, we start
this section by providing some terminology and concepts of first-order logic.
For general information on the applications of logic to databases see Gallaire
et al. (1984). The syntax of first-order logic is based on a class of languages and
the formulas that may be written in these languages. Each language contains a
set of logic and non-logic symbols. The logic symbols are the same for each
language and contain variables, logical connectives and quantifiers, and punc-
tuation symbols; the non-logic symbols are constants, predicates, and func-
tions. The rules for constructing formulas are the same for all first-order lan-
guages.
The symbols of a first-order language are as follows.

1. Logic symbols:

Variables: x, y, z, x1, y1, z1,...(infinitely many)
Connectives: = (not), \/ (or), & (and), — (implies)
Quantifiers: V (for all), 3 (there exists)
Punctuation: parentheses and comma

Equality: =

2. Non-logic symbols:

Constants: a, b, c, susan, prof,...(as many as needed, possibly 0)
Predicates: P, R, Teach,...(at least one)
Functions: f, g, plus,...(as many as needed, possibly 0)

The presence of functions distinguishes knowledge-based systems from deduc-
tive database systems. Thus, deductive database systems are a special (but im-
portant) case of knowledge-based systems.

The symbols of a language are combined in a standard way to produce
terms and formulas. We refer the reader to standard books in logic (Enderton,
1972; Mendelson, 1978) and theorem-proving (Chang and Lee, 1973;
Loveland, 1978) for details. As is usual in work on theorem proving, we deal
primarily with clauses, where all variables are universally quantified and
which have the general form

— Al\/' . .\/ Bl Ak\/Ak+ 1\/. . .\/An

4 KNOWLEDGE ENGINEERING: APPLICATIONS

where & = n and each A, is an atomic formula. We use a Prolog-like notation
where in most cases such a clause is written as

Ak+]9"-;An(—Al!""Ak

with the atoms A,,..., A, in the body and A,,,,..., A, in the head of the
clause. A ground clause contains no variables. A Horn clause has at most one
atom in the head, that is, K = n =< k + 1. A definite clause has one atom in the
head, thatis, n = k + 1. A clause is range-restricted if every variable that ap-
pears in the head also appears in the body. Range-restricted clauses are very
useful because their truth or falsity does not depend on the set of constants in
the language, only on the constants in the clause. A clause is recursive if a
predicate appears in both the head and the body.

The presence of recursive definitions gives great power to knowledge-
based systems over relational database systems. Consider a definition such as
the one for Ancestor in terms of Parent:

Ancestor(x, y) « Parent(x, y)
Ancestor(x, y) < Parent(x, z), Ancestor(z, y)

The second clause is recursive, and the simple query
< Ancestor(joe, x)

finds the ancestors of joe. However, Ancestor cannot be defined by using the
standard relational algebraic operations on Parent.

We mentioned earlier that clauses are usually written in such a way that
both the body and the head of a clause contain only positive atoms. However,
there are cases where it is useful to define rules using one or more negated
atoms in the body. For example,

Backordered(x) < Ordered(x),— Instock(x)

defines the predicate Backordered in terms of a negated atom in the head of
the clause.

While both recursion and negation in the clause body are important and
powerful concepts for knowledge bases, substantial problems may arise when
they are combined. Consequently, usually a limitation is placed on the combi-
nation of recursion and negation by not allowing recursive definitions via ne-
gation. For example,

P(x) < —10(x)
O(x) < P(x)

would not be allowed. The idea is that in defining a predicate, negation should
be applied only to already known predicates. That was the case for the defi-
nition of Backordered, as the Instock predicate was assumed to deal only with
facts. But in this case, Q does not have a prior definition as far as 2 is con-
cerned; in fact, O is defined in terms of P. A knowledge-based (or deductive
database) system that applies this restriction is said to be stratified [see Apt et

INTEGRITY CONSTRAINTS IN KNOWLEDGE-BASED SYSTEMS 3

al. (1988), Van Gelder (1988), and Przymusinski (1988) for the complete defi-
nition and many results about stratification].

Now we come to the definition of the knowledge base component of a
knowledge-based system. Not all of the restrictions that we give are essential
for our results, but these restrictions simplify the presentation and proofs of
results, and, in any case, most knowledge bases in practice either satisfy the
assumptions or can be transformed into such a form. A knowledge base
K = (TH, IC) consists of two components: a theory TH and a set of integrity
constraints IC. In this chapter we consider TH to consist of two distinct sets of
clauses and a metarule:

TH = (EDB, IDB, NFF)

EDB, the extensional database, is a set of ground atoms; these represent
the facts of the knowledge base. The predicates that appear in EDB are called
extensional predicates. IDB, the intensional database, is a set of deductive
laws (axioms) that are range-restricted Horn clauses that satisfy the property
of stratification. We also assume that no predicate is both intensional and ex-
tensional. NFF, negation as finite failure, is a metarule used for proving ne-
gated clauses as follows: If P is a ground atom, then TH+ — P if notTH + P),
that is, if all attempts to prove P terminate in failure. In order to handle equal-
ity correctly, we assume that TH also contains x = x < . Finally, in this chap-
ter we restrict IC to be a set of nonrecursive range-restricted clauses contain-
ing only extensional predicates.

A query is a conjunction of atoms, Q: Al &...& Ak. We write Q as
Qx1,..., xn) if x1,..., xn are all the variables in Q. An answer to ox1,...,xn)
is a sequence of constants, {al,..., an), such that TH } Nal,..., an), where
Q(al,..., an) stands for the simultaneous substitution of ai for xi in Q. This
definition carries over to the case where #n = 0; such a query is a yes-no ques-
tion.

We illustrate the notion of a knowledge-based system by providing an ex-
ample. This example has only a few predicates, no functions, no recursion,
and no negated atoms in the body, but it illustrates important concepts and
techniques that can be applied in a similar way to large and more complex
knowledge bases. First we write the extensional and intensional predicates and
provide the attributes for each. The attributes are not used specifically later,
but they are helpful in understanding the meaning of the predicates. We do not
actually write the facts in the EDB because typically the number of facts is
large. We also write each integrity constraint both as a clause and in English.

Example.
Extensional predicates:

Schedule(Teacher Name, Department Name, Course Number)
Registration(Student Name, Department Name, Course Number)
Catalog(Department Name, Course Number, Credits)
Instructor(Teacher Name)

60 KNOWLEDGE ENGINEERING: APPLICATIONS

Intensional predicate:

Teacherof(Teacher Name, Student Name)

Extensional database:

Schedule, Registration, Catalog, Instructor

Intensional database:

Teacherof(x, y) <— Schedule(x, «, v),Registration(y, u, v)
Intensional constraints:

IC1. Baker teaches only history courses.

vy = hist « Schedule(baker, y, 7)

IC2. Course numbers in the computer science department are less than 600,

y < 600 « Catalog(cosc, y, 7)

IC3. No one is a teacher and a student for the same course.

<« Schedule(x, y, z), Registration(x, vy, z)

ICA4. Davis is registered only for economics courses.

¥y = econ < Registration(davis, y, z)

IC5. Every teacher’s name in the Schedule relation appears in the Instructor re-
lation.

Instructor(x) « Schedule(x, v, z)

3 PARTIAL SUBSUMPTION AND RESIDUES

In order to apply integrity constraints in knowledge-based systems, we use a
technique called partial subsumption. This method is applied to predicates be-
fore data manipulation. Partial subsumption yields fragments of integrity con-
straints, called residues, which are then attached to the predicates and are
used later during query processing and updates. The process of partial
subsumption, residue generation, and residue attachment to predicates is
called semantic compilation. This process can be performed at an initial stage
and need not be modified after standard data manipulation. Only changes to
the IDB or the IC would force a semantic recompilation. In this section we
define and illustrate semantic compilation. A formal treatment, including
proofs of theorems asserting the correctness of the process, may be found in
Chakravarthy et al. (1988).

Partial subsumption is a modification of subsumption, so we start with
the latter. Subsumption is a relationship between two clauses.

INTEGRITY CONSTRAINTS IN KNOWLEDGE-BASED SYSTEMS 7

Definition. A clause C subsumes a clause D if there is a substitution o such that
Co is a subclause of D. For example, if

C = R(X, b) (_P(x) y)’ Q(y! 2, b)
and

D = R(a, b) < P(a, 2), Oz, z, b), S(a)
then C subsumes D by the substitution {a/x, z/y}.

To understand partial subsumption, we need to look at the basic
subsumption algorithm in Chang and Lee (1973), testing to see if C subsumes
D. We explain this algorithm by illustrating its effect on the clauses C and D.
First, D is instantiated to a ground clause by using new constants, not present
in C or D. We will use k1,..., kn for these constants and call the substitution
0. Here, 0 = {k1/z}, so that

D0 = R(a, b) « P(a, k1), Q(k1, k1, b), S(a)
Then D8 is negated; — D8 is a set of literals. In this case,
1D8 = { < R(a, b), P(a, k1) < , Q(k1, k1, b) « , S(a) <}

Next, the algorithm tries to construct a linear refutation tree with C as the
root, using at each step an element of — D9 in the resolution. The result is that
C subsumes D if and only if at least one such refutation tree ends with the null
clause. Here we obtain the tree shown in Fig. 1-1.

The essence of partial subsumption is the application of the subsumption
algorithm to an integrity constraint and the body of an IDB clause (which de-
fines the intensional predicate). As we need to do this process for extensional
relations also, we write the trivial axiom R < R for each extensional relation,
strictly for the purpose of applying the subsumption algorithm in this manner.
In general, the subsumption algorithm does not yield the null clause, because the
integrity constraint does not subsume the body of the axiom. However, a
subclause of the integrity constraint might subsume the body of the axiom. This is

R{x,b) < P(x,y},Qly,z,b) < Rla,b)
[a/x]
< P{a,y),Qly,z,b) P(ak1) «
{k1/y)
+Q(k1,z,b) Q(k1k1,b) «
(k1/2]
FIGURE 1-1

- Linear refutation tree for subsumption.

