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PSSC Physics has been serving students in the United
States and abroad for twenty years. The basic laws of
physies have not changed during that period, but the
frontiers of research, as well as new needs of tech-
nology and society, have to be reflected in secondary
school physies. It would be counterproductive to try
to include all the latest topics from quarks to black
holes, thereby overloading the course and reducing it
from a vehicle for studying nature to an aid to memo-
rizing vocabulary. On the contrary, we decided to
further streamline the course and thereby provide
room for some subtle changes in emphasis, which will
enable the students to better relate the fundamentals
of physies to the world around them.

The most prominent example of such a change is
greater emphasis on the particle nature of light and
the energetics of light relative to the wave motion of
light. The increased interest in the utilization of solar
energy requires understanding of photoelectric pro-
cesses (including photochemical processes), which can
be understood only with the quantum model of light.
In the previous editions, we introduce a qualitative
particle model of light before studying particle dy-
namics. After discarding this model in favor of the
wave model we came to the photon model only toward
the end of the book.

In this edition Newtonian Mechanies, including the
mechanics of charged particles, precedes optics. This
sequencing enables us to include radiant energy in the
overall picture of energy changes and to study the
interaction of light with matter in a quantitative way,
leading directly to a modern particle model of light.
The wave model still retains its function in addressing
the propagation of light; the final synthesis of the two
models and its central role in modern physics becomes
more explicit.

'Preface to the
Fifth Edition

The last decade has provided new insights into how
students learn physics and how teachers can better
monitor that learning in order to facilitate it. We took
notice of this progress in several ways, among them is
the addition of many new single-step questions and
their placement between Sections so that they serve
both as immediate reinforcement and connecting
tissue.

In this edition we added a number of excursions to
the structured development of physics. They take the
form of short photo essays which highlight a natural
phenomenon or a technical application related to the
chapter in which they appear. '
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A freight train is rolling down the track at 65 kilometers per hour. Out of
the fog a kilometer behind, a fast express appears, going at 120 kilome-
ters per hour on the same track. The express engineer slams on his
brakes. With the brakes set he needs 3 kilometers to stop. Will there
be a crash? What we are called upon to do here is to predict where the
two trains will be at subsequent times, and to find in particular whether
they are ever at the same place at the same time. In a more general
sense, we are asking about the connections between speeds, positions,
and times.

The general subject of such relationships is called kinematics. In
studying kinematics we do not concern ourselves with questions such as
“Why does the express train need 3 kilometers to stop?” To answer such
a question we would need to study in detail how the brakes slow down the
train. Such questions as these will be considered in later chapters.
Here we just consider the description of motion. We shall start with the
discussion of motion along a straight-line path. Then in the third chapter
we shall extend the discussion to describe more general motions.

In both of these chapters we shall draw on our ability to measure time
and position, for all motion is the changing of position as time goes on.
Usually, we shall not think consciously of the time and position measure-
ments, but without them we would in fact be talking words without
meaning.

1-1 Position and Displacement Along
a Straight Line

The first step in the study of motion is to describe the position of a moving
object. Consider a car on an east-west stretch of straight highway. To
answer the question “Where is the car?” we have to specify its position
relative to some particular point. Any well-known landmark can serve
as our reference point, or origin for measuring position. We then state
how far the car is from the landmark and in which direction, east or west,
and the description of position is complete. Thus, for example, we say
that the car is 5 km west of the center of town, or it is 3 km east of the
Sandy River Bridge. It is not enough to say only, “five km from the
center of town.” You would not know whether this means 5 km east or
5 km west. o '
Similarly, if you wish to describe the position of a point on a straight
* line that you have drawn, you must specify some origin and state a dis-
tance and direction from that origin. But this time the direction cannot
be given as east or west, for the line may not run that way. You might
try “right and left,” but how would someone standing on the other side of
the line interpret these directions? To get a description of direction
along the line about which we can all agree, we shall call the line on one
side of the crigin positive, on the other side negative; we can then specify
position on the line by a positive or negative number which gives both the
distance (in some convenient units) and the direction of that point from
the origin. We shall refer to such a number, with its sign and units, as




Figure 1-1 The x coordinate line.

Figure 1-2 Two equal displace-
ments, (a) positive and (b) negative.

X:i’ origin X x}
| ik ol el

9 —8 —7 —6 —5 —4.—3 —2 —1 0 +1 42 43 +4 +5 46 +7 +8 +9

the coordinate of the point. If we call the line the x coordinate line, we
shall label these coordinates as x,, x,, @3, etc. (Fig. 1-1).

We shall often want to refer to the change of position in our study of
motion and we shall give it a special name, the displacement. If an ob-
ject moves from position x, to position x,, the displacement is given by
the difference x, — x,, that is, the later position coordinate minus the
earlier one. Displacement can be either positive or negative (positive
when z, is greater than x,, negative when , is less than x,). Whether
the displacement is positive or negative depends only on the direction of
motion; it does not depend on where on the x coordinate line the displace-
ment takes place. The two displacements in Fig. 1-2 (a) are positive and
equal to each other. The displacements in Fig. 1-2 (b) are negative and
also equal to each other. :

X=x;=(=1)—(-3)=+2 Xpe X =4=2= 42

X X2 Xy X2
t + + } +
-4 -3 -2 - 0 +1 +2 +3 +4
(a)
X;—x;=(-3)—0=-3 Xy=x,=1=4=-3
X, X, X3 Yz X
-4 i -2 = 0 + +2 +3 +4

Displacements are also independent of the point chosen for the origin of
the coordinate line. Figure 1-3 shows the position coordinates of the
same points as those in Fig. 1-2 but on a coordinate line whose origin is
at a different place. The position coordinates are different, but the dis-
placements, being differences, are the same.

Differences, or changes, occur so often in science and mathematics that
a special notation is used to express them. The Greek letter delta,
written as A (Greek capital D), is usually chosen to stand for “difference”
or “interval” or “change of” or “increase of.” Thus Aa means “change in
a” or “increase in «” and is read as “delta a.” It makes no sense to sepa-
rate the A from the a. The whole symbol Aa has a special meaning: the
change in a or an interval of a. It does not mean A multiplied by a.

Specifically, in the case of a change in position, the displacement is
written as '

Ar = xp, — x4

where ., is the later position.




xX=x;=(=1)=(=3)=+2 Xy=Xx|=4=2= 42

X X3 X Xy

1 t t + +
— -3 -2 - 0 +1 +2 +3 +4
Xy =x"=+1=(-1)=+2 Xy =x'=6—4=+2
xXj? by X, X5

+ + t t +
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To describe the motion of an object along a coordinate line, it is often

convenient to make a graph of position against time. In such graphs, we
usually plot the time along the horizontal axis and the position along the
vertical axis. Figure 1-4 is an example of such a graph. There are
many qualitative features about the motion which you can learn immedi-
ately from the graph.

The object was at position x = 3.0 cm at the time chosen as zero time.
It stayed there till £ = 3.0 s. At that instant it started moving away
from the origin. Its farthest position was x = 6.5 cm and it arrived
there at t = 10.2 s. It then reversed its direction, crossed the origin,

and stopped again at = —2.0 cm, etec.
T
6
5
4
T 3
= 2
P
g 1
.‘E 0 5 § i i 1 1 1 1 1 1 1 L )¢ 1 1 1 1 1 l 1 i § J
:o_ 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 1N8 19 20 21 22 23
. Time ¢ (seconds) '
_ZLV_JH_M_J b= . 2 sl e
3k 2 3 5 6 T A g
_al T 8 9 10
—sL

Figure 1-3 In'(a) the same displace- -
ments as in Fig. 1-2(a) are shown on
top; underneath they are referred to a
coordinate axis with a different origin.
In (b) the displacements of Fig. 1-2(b)
are referred to a different origin.

Figure 1-4 A position-time graph.
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1. Express the change in the following quantities, using the A notation:
(a) The temperature T, of a room at 9 AM was 19°C, and an hour later
the temperature T, was 25°C.
(b) The reading d, of the odometer at the beginning of a trip was
2380 km, and the reading d, at the end of the trip was 4060 km.
(c¢) Before dieting, a person’s mass w, was 80 kg, and after dieting the
person’s mass w, was 70 kg.
2. In the table at the left, which displacements are equal?

3. Does the graph of a car trip in Fig. A represent a real situation? Ex-

plain.

1-2 Steady Motion: Constant Velocity

Moving fast and moving slowly are very familiar terms to everyone, but
you may not have noticed that there are two different (although related)
ways of expressing this distinction quantitatively. In sports we say that
a runner a is faster than runner b, if a covered the same distance as b in
less time. When it comes to highways, we say that on the expressway
you can drive faster because you are allowed to cover more km in one
hour than on a side road.

We can use the graph showing position as a function of time (Fig. 1-4)
to find when the object was moving fast or slow. We shall do so by the
second method, that is, by comparing displacements made in equal time
intervals. Since a time interval is the difference between two time coor-
dinates t, and t,, it is appropriate to designate the difference ¢, — ¢, by
At.

As an example let us compare the displacements of the object whose
motion is described in Fig. 1-4 for time intervals At = 2 s, beginning
at various times (Table:1). .

Table 1 tells us that the object r.noved fastest during intervals 6, 7, and

Table 1
NUMBER
OF ty x ty 2y At Ax
INTERVAL (s) (em) (s) (cm) (s) (ecm)
1 0 8.0 2.0 3.0 2.0 0
2 2.0 8.0 4.0 8.5 2.0 0.5
3 4.0 8.5 6.0 4.5 2.0 1.0
4 5.0 4.0 7.0 5.0 2.0 1.0
53 9.0 6.0 11.0 6.0 2.0 0
6 11.0 6.0 13.0 4.0 2.0 -2.0
7 14.0 3.0 16.0 1.0 2.0 -2.0
8 16.0 1.0 18 -1.0 2.0 -2.0
9 18.0 -1.0 20.0 -2.0 2.0 -1.0
10 21.0 -2.0 23.0 -1.0 2.0 1.0




8, and that it was moving to the left. (In these intervals Ax is largest in
magnitude, and negative.)

In intervals 1 and 5 the displacement was zero. Does this mean that

the object was at rest during those time intervals? The table alone is not
enough to settle the question. Going back to the graph in Fig. 1-4, you
see that at any instant during interval 1—that is, betweent = 0 and ¢t =
2.0 s—the object was at rest at « = 3.0 em. However, during interval
5—between ¢t = 9.0 s and ¢ = 11.0 s—the object was first moving to the
right (upward on the «x scale) and then to the left (downward on the x
scale). It just happened that at the end of the time interval it was at the
same position as at the beginning.

Now let us examine the motion during intervals 6, 7, and 8; in all three
the displacement was —2.0 cm. Was the motion the same in these in-
tervals? To answer this question, we shall redraw Fig. 1-4 on a larger
scale and divide each time interval into two equal parts, and find the cor-
responding displacements (Fig. 1-5). The results are shown in Table 2.

You see from the table that the subdivision of interval 6 shows that
there were unequal displacements, whereas the subdivision of intervals 7
and 8 showed equal displacements to within the accuracy of the reading of
the graph. Further subdivisions of intervals 7 and 8 show that for any
equal time intervals these smaller displacements are also equal. A mo-
tion for which this is the case is called steady motion. On a position-
versus-time graph, portions corresponding to steady motion must be

Position x (cm)
© = N W A UL A
T

1 1
14 15

-1 Time ¢ (seconds)
-k —— ——
6a 6b 7a 7b 8a 8b
—-3L
Table 2
NUMBER
OF ty T, te g At Ax
INTERVAL (s) (cm) (8) (em) (s) (em)
6a 11.0 6.0 12.0 4.2 1.0 -1.8
6b 12.0 4.2 13.0 4.0 1.0 ~0.2
Ta 14.0 3.0 15.0 2.0 1.0 -1.0
Th 15.0 2.0 16.0 1.0 1.0 -1.0
8a 16.0 1.0 17.0 0 1.0 -1.0

8b 17.0 0 18.0 =1.0 1.0 -1.0

Figure 1-5 A part of Fig. 1-4 re-
drawn on a magnified scale.
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straight-line segments, since only for a straight line do equal changes
along one axis correspond to equal changes along the other.

We can look at the steady motion in intervals 7 and 8 in another way.
In each second the displacement is 1.0 cm; in 2.0 s it is twice as much or
2.0 cm; in 3.0 s it is three times as much or 3.0 ¢cm, and so on, as long as
the motion is steady. We can generalize this result as follows: if for any
equal time intervals the displacements are equal, then the dlsplacement
is proportional to the time interval:

Ax = VAL

where v, the proportionality constant, is the velocity. Since Ax has the
dimension of length and At the dimension of time, v has the dimension of
length divided by time, or length per unit time. Its units depend on the
units in which the displacement and time are expressed. For example, if
Az is expressed in cm and At in seconds, then v is given in em/s. This
is seen best by writing

= .ég

At°
For the straight section of the g'raph in Fig. 1-4 which we have just dis-
"cussed, v = % = —1.0 em/s. The sign of the velocity is always

the same as the sign of the displacement Ax, because At is always posi-

tive. The magnitude of the ratio —— - is a measure of the steepness of the

At
straight part of the x vs t graph; it is called the slope of the line.

When the ratio of two changes is involved, as it is in determining a
velocity, it is understood that the change in the numerator “takes place

during” the interval of the denominator. Thus v = Ax (which is read “v

At
equals delta x over delta ¢”) means “to find the velocity, take the change
in position Az and divide it by that time interval At during which it took
place.” In general, when we write Aa/Ab, we mean that we shall use the
change in ¢ that corresponds to a given change in b.

4. Express the following velocities in kilometer /hour. Give examples of
objects that move with such velocities.
@ 1m/s (b) 10m/s (c) 25 m/s (d) 250 m/s (e) 8000 m/s

5. Identify the parts of the graph in Fig. 1-4, page 3, where the motion
is steady, and determine the velocity of the object in those regions.

6. Find the slopes of the graphs in Fig. B. State the units in each case.

Figure B
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forged aluminum and not rubber?

© You will beabletoﬂgm‘eoutt.heanswerstotheseques-
 tions after studying the néxt few chapters, in which we go
beyond the description of motion and t.ake up the question of
how oh,)eets are made to move.
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Figure 1-6 Position-time graph for
an object with continually changing
velocity.

Position x (meters)

0 20 40 60 80 100

Time ¢ (seconds)

1-3 Instantaneous Velocity

We have seen that for steady motion the change in position, i.e., the dis-
placement, is proportional to the change in time. But most motions are
not steady, and their position-versus-time graphs will not have straight
segments. Is there a measure for how fast an object moves when its mo-
tion is not steady?

Consider the position-versus-time graph shown in Fig. 1-6. How fast
is the object moving at ¢ = 50 s? The motion around that time is not
steady, as you see from the fact that the line is curved. Now let us look
with a magnifying glass at only the part of the graph between ¢ = 45 s
and t = 55 s (Fig.-1-7). The magnified part of the graph looks straighter
than the whole graph, because it is only a small portion of it. A still
greater magnification shows us the interval which covers only 0.5 s be-
fore and after the 50-s mark (Fig. 1-8). In this small interval the line is
almost straight, and we can find the velocity by measuring the slope of
the “straight” line. We choose two points 1 and 2 in Fig. 1-8 near 50 s;
then, reading from this graph, we find

t, = 49.86 s, x, = 38.42 m.
t, =50.16s, a =38.58 m.
Consequently, the slope is given by

Ax _z — 2, _ +0.16m
At t, — 0.30 s

and the veloeity at the point 50 s from the start is very close to +0.53 m/s.
Thus we can say that the velocity of the object at t = 50 s is very nearly
0.53 m/s in the positive direction.

~ +0.53 m/s,




The magnified part of a graph looks straighter than the whole graph be-
cause in the magnified picture we look at only a small portion of the un-
magnified graph. When we magnify sufficiently, we look at only a small
interval of « and t. In effect, therefore, we find the slope of a small por-
tion of the curve by taking the ratio

_éf . xz - iL‘l
At t, — 4

for a pair of points 1 and 2 which are very close together. The points we

use must be close enough together so that the graph is essentially a

straight line in between.
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