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Preface

This volume contains the papers presented at the Fifth Biochemical Engineering
Conference held in Henniker, New Hampshire, during July 1986. The theme of the
conference was Advances in Biochemical Engineering. A series of topics covering
advances in both biology and engineering were covered.

The Fifth Biochemical Engineering Conference was organized by the Engineering
Foundation with the financial support of the National Science Foundation and the
New York Academy of Sciences. The support of these organizations is gratefully
acknowledged. We are also deeply appreciative of the financial contributions made by
several companies. These include: Ajinomoto Company, Amoco Corporation, Bee-
cham Pharmaceuticals, Bio-Technical Resources, Cetus Corporation, Ciba-Geigy,
H. J. Heinz Company, Kraft, Miles Laboratories, Monsanto, and Pharmacia.

The conference was organized and directed by the following: Chairman—William
A. Weigand, Illinois Institute of Technology; Program Chairman—Michael Shuler,
Cornell University; Executive Committee—James Bailey, California Institute of
Technology; David DiBiasio, Worcester Polytechnic Institute; A. Emery, University of
Birmingham; Henry C. Lim, Purdue University; Shuichi Suzuki, Saitoma Institute of
Technology; K. Venkatasubramanian, H. J. Heinz Company; Wolf Vieth, Rutgers
University; Christian Wandrey, Institute for Biotechnologie, Jiilich; Daniel Wang,
Massachusetts Institute of Technology; and Harold A. Comerer, Director, Engineer-
ing Foundation.

The session chairmen and cochairmen are as follows: R. M. Kelly, Johns Hopkins
University; K. M. Ulmer, University of Maryland; D. S. Clark, Cornell University;
W. M. Dean, Massachusetts Institute of Technology; H. Pederson, Rutgers Universi-
ty; J. Feder, Monsanto Company; A. Margaritis, University of Western Ontario; W. E.
Goldstein, Miles Laboratories; D. A. Lauffenburger, University of Pennsylvania; M.
Kennedy, Upjohn Company; D. DiBiasio, Worchester Polytechnic Institute; J. Fiesch-
ko, Amgen; G. Stephanopoulos, Massachusetts Institute of Technology, M. M.
Domach, Carnegie-Mellon; M. Ladisch, Purdue University; and J. Hong, Illinois
Institute of Technology.

In addition, Larry E. Erickson of Kansas State University and Chester Ho of
SUNY Buffalo chaired a large poster session. When possible, these poster papers were
placed within the sessions listed in the Table of Contents. However, in order to
accommodate poster presentations that did not fit under these eight main session
headings, three more new sessions were created and placed at the end of the Table of
Contents. These sections are entitled as follows: Aspects of Transport Processes;
Enzyme Production; and Other Aspects of Bioreactions.

W. A. Weigand
M. L. Shuler

xi
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PART I. BASIC ADVANCES IN CELLULAR SCIENCES

Redirection of Cellular Metabolism

Analysis and Synthesis”

JAMES E. BAILEY, DOUGLAS D. AXE,
PAULINE M. DORAN,” JORGE L. GALAZZO,
KENNETH F. REARDON, ALEX SERESSIOTIS,
AND JACQUELINE V. SHANKS

Department of Chemical Engineering
California Institute of Technology
Pasadena, California 91125

INTRODUCTION

Achievement of optimal productivity and yields in bioprocesses using living cells
generally requires redirection of cellular metabolic activity. Rarely is the native
organism optimized with respect to process goals, thereby providing both the opportu-
nity and the challenge of altering native metabolic function to achieve the most
effective substrate utilization, cell growth, or product synthesis and release (or all of
the above). The two main vehicles for metabolic manipulation—environmental control
and alteration of the genetic constitution of the organism—are already evident in prior
practice of bioprocessing art. However, until recently genetic manipulation was
achieved primarily through random mutagenesis, and environmental manipulation
was restricted to adjustment of solution composition during batch cultivation of cell
suspensions.

New developments in genetic technology and in engineering systems now provide
the opportunity for more substantial and more carefully controlled and characterized
manipulation of cellular DNA and environment. Using contemporary cloning tech-
niques, the metabolic structure of a cell may be modified in a precise and well-
controlled fashion by adding new proteins to the cell, by inhibiting or interfering with
existing enzyme activities, by altering native control of expression of protein activities,
and by amplifying particular protein activities already functional in the organism (e.g.,
see references 1-3). Furthermore, by the use of regulated replicators and expression

9This work was sponsored by the Energy Conversion and Utilization Technology (ECUT)
Program of the United States Department of Energy, the National Science Foundation, the
Monsanto Company, and the sponsors of the Caltech Process Biocatalysis Program. J. L. Galazzo
was supported by a fellowship from the National Research Council - CONICET, Argentina.
These nuclear magnetic resonance experiments were made possible by the facilities and the
assistance of the Southern California Regional Nuclear Magnetic Center (NSF Grant No.
CHE-84-40137), and software for NMR spectral analysis was provided by the NIH Resource
Laboratory at Syracuse University (Grant No. RR-01317).

Current address: Department of Biotechnology, University of New South Wales, Post Office
Box 1, Kensington 2033, Australia.
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controls (e.g., see references 4-6), these cloned modifications of cellular metabolism
may be turned up or down by adjustment of environmental conditions.

More precise and different types of environmental manipulations are made possible
by advances in process control and sensors, by the advent of convenient cell retention
and recycle capabilities, and by cell immobilization. In particular, cell immobilization
or containment enables continuous processing without the constraint of matching
process throughput with cellular growth capabilities. This thus permits decoupling of
growth and product formation and also provides the opportunity for more direct
control of cell environment with less influence from cellular biochemical activities.

The opportunity to adjust many aspects of cell environment as desired and to
introduce virtually any new protein into the living cell over a continuum of activity
levels provides important new possibilities for bioprocess innovation and improvement.
Simultaneously, though, it poses new problems. The spectrum of choices available is so
vast that empirical or trial-and-error procedures to search for optimal genetic and
environmental conditions are almost certain to lead to a significantly suboptimal
solution. In order to guide the selection of genetic and environmental conditions, the
metabolic engineer requires systematic, quantitative knowledge of the structure of the
metabolic reaction network and of its regulation and kinetic activities. Because such
knowledge is not now available and because general methods for predicting and
analyzing metabolic reaction network structure and kinetic features are not available,
new research is needed to identify these systematics. Here, the capability for genetic
and environmental control already mentioned plays a key role in carrying out
experiments to improve understanding of the connection between different metabolic
engineering strategies and corresponding consequences.

In this regard, it is important that the results of metabolic manipulation be
characterized experimentally as completely and in as much detail as possible.
Therefore, it is also significant that recently developed experimental techniques
[including fluorescence measurements™ and in vivo nuclear magnetic resonance
(NMR) spectroscopy®'?] enable noninvasive, multicomponent, transient measure-
ments of intracellular concentrations of direct physiological and biochemical interest.
Used in concert with modern quantitative treatment of metabolic reaction networks,
metabolic pathway kinetic models, and cellular growth models, these measurements
provide a basis for necessary fundamental understanding that relates cause and effect
in metabolic engineering.

The examples provided below illustrate the significant influence of immobilization
on the metabolic function of yeast, explore the consequences of genetic manipulation
by mutation and by the introduction of recombinant plasmids, and examine the
analysis and synthesis of metabolic pathways by considering the acetone-butanol
fermentation and a new computer system for identifying metabolic reaction sequences.
In these examples, the role of detailed measurements of intracellular conditions and of
mathematical models and structures will be illustrated as well.

ENVIRONMENTAL EFFECTS: KINETICS OF IMMOBILIZED
SACCHAROMYCES CEREVISIAE

Most previous publications addressing the question of immobilization effects on
cell kinetics have focused on reduction in overall rates of biotransformation processes
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or cell growth due to either substrate or product concentration gradients (or both)
arising from mass transfer limitations.”>'* However, there is substantial evidence that
immobilization (which results in cell-surface, cell-fiber, or cell-cell interactions not
encountered in conventional, relatively dilute suspension cultures) can cause qualita-
tive changes in cellular function and composition.'s" This type of immobilization
effect is the central concern here because it is the extent to which immobilization can
effect major qualitative changes in cellular function that gives cell immobilization
significant potential as a means for manipulating metabolism. This summary will focus
on experiments that were specifically designed to explore and to demonstrate the
extent to which cell function is altered by immobilization.

Specific Rates of Suspended and Immobilized Cell Bioconversion

In these experiments, Saccharomyces cerevisiae (ATCC 18790) was immobilized
by adsorption onto 4-mm glass beads that were coated with a thin layer of glutaralde-

TABLE 1. Comparison of Initial Specific Rates in Anaerobic Batch Ethanol
Fermentation by Suspended and Immobilized S. cerevisiae"

Suspended Immobilized
Cells Cells

Suspended cell specific growth rate

(™) 0.51 0.50
Immobilized cell specific growth rate

) — 0.28
Initial specific glucose consumption

rate (g/h cell x 10") 5.0 10.5
Initial specific ethanol production rate

(g/h cell x 10') 23 33
Initial specific glycerol production

rate (g/h cell x 10"?) 2.7 3.5

hyde—cross-linked gelatin. The immobilized cells were studied in an anaerobic
recirculation reactor system that employed a medium reservoir at controlled pH (4.5)
and temperature (30 °C). The medium was circulated at high flow rates (less than 1%
conversion per pass) through a packed bed reactor filled with immobilized cell beads."
In immobilized cell experiments, cells were inoculated onto the beads, fresh medium
was added, and ethanol production was monitored until exponential increase in ethanol
concentration was observed. With such a well-defined and reproducible physiological
state of the cells experimentally established, the column was washed, fresh medium
was added again, and samples were taken for analysis of glucose, ethanol, glycerol, and
cells in suspension. Beads were removed from the reactor intermittently, and immobi-
lized cells were removed and counted in order to directly monitor growth of the
immobilized cells and to allow kinetic measurements to be evaluated on a specific (per
cell) basis. Suspended cell experiments conducted for comparison involved a similar
sequence of sequential cultivations and assays."”

TABLE 1 summarizes the resulting initial rate data and shows that immobilized
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cells consume glucose at about twice the specific rate as suspended cells and produce
ethanol at a specific rate around 1.5 times the suspended cell rate. Specific growth
rates of suspended and immobilized cells differ by roughly a factor of two. Additional
information on differences in cell-cycle regulation and macromolecular composition in
suspended and immobilized cells studied by this approach is available in reference 19.

Modeling and Measuring NADH Dynamics in Suspended and Immobilized Yeast

More detailed experimental analyses have been conducted and mathematical
models have been constructed and analyzed in order to probe even further into the
differences between immobilized and suspended cell metabolism. Oxidation and
reduction of the NADH-NAD cofactor system is a critical feature at several points in
the metabolic reaction pathway from glucose to ethanol in yeast. Because of feedback
interactions and nonlinear features of the fermentation reaction sequence, intracellular
NADH levels measured by fluorescence in suspended cells have revealed interesting
dynamic features.”>*? For these reasons, fluorescence measurements of NADH level
changes were conducted within yeast immobilized on a gelatin surface.?? The immobi-
lized cell surface was prepared on a glass slide, and the gelatin film supporting the
immobilized yeast was subsequently removed and inserted into a quartz cuvette for

0.9~

0.8~ .\.

07—

PERIOD (min)

0.6

0.5 | ! 1 ]
0 20 40 60 80 100

GLUCOSE CONCENTRATION (mM)

FIGURE 1. Relationship between glucose concentration and period of the NADH oscillation for
suspended S. cerevisiae.
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NADH

+KCN

-— TIME

FIGURE 2. Nonlinear transient fluctuations in intracelltular NADH fluorescence for immobi-
lized cells at 25 °C after glucose addition to 11.2 mM. KCN is added to block respiration.”

monitoring using a fluorescence spectrophotometer. Excitation radiation was supplied
at 340 nm and emitted fluorescence was monitored at 460 nm to selectively observe
reduced pyridine nucleotides (as was done in numerous previous studies of suspended
yeast).

In these experiments, a sample of suspended or immobilized cells was starved in
buffer. Subsequently, glucose was added, and five minutes later, KCN was added to
eliminate respiration. NADH transients observed after KCN addition to suspended S.
cerevisiae were roughly sinusoidal in character, with periods that depended upon
glucose concentration as indicated in FIGURE 1.

On the other hand, after applying the same protocol of starvation, glucose addition,
and introduction of KCN, immobilized cells exhibited complicated and much more
nonlinear oscillations.” One example of dynamic trajectories observed with immobi-
lized cells following addition of KCN is shown in FIGURE 2. In addition to the
difference in the character of NADH transients following glucose and KCN addition
to suspended and immobilized cells, a major qualitative difference was observed for S.
cerevisiae cells that were grown in these two configurations. In the absence of glucose,
no transient-reduced pyridine nucleotide fluctuations whatsoever were observed for
suspended cells. However, for immobilized cells, highly nonlinear stair-step fluctua-
tions (which appear to be a relaxation oscillation superimposed on a mean drift of the
system) are evident.

The qualitative differences observed between suspended and immobilized yeast
indicate major distinctions between these two types of cells with respect to carbon
catabolism and its regulation. In an attempt to gain some understanding of the basis
for these different types of transient behaviors, a lumped kinetic model for the
fermentation pathway was formulated.” In this model, steps in the fermentation
pathway that are known to operate far from equilibrium or that are subject to allosteric
regulation (or both) were explicitly included (TABLE 2). The rate of glucose uptake was
an adjustable model parameter, and the rates of ATP hydrolysis via step 5 and of step 6
in TABLE 2 were assumed to be described by mass action kinetics. The nonequilibrium
steps (nos. 2, 3, and 4 in TABLE 2) were analyzed using detailed kinetic expressions
taken from the literature (Vpgeg: reference 25; V,: references 26 and 27; Vpg: reference
25). The model is written for the fluorescence measurement experimental conditions
applied above in which negligible cell growth occurs. The state variables of the model
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TABLE 2. Lumped Metabolic Reactions Used in the Dynamic Model for
Fermentation by S. cerevisiae®

Via

F6P + ADP

Step 1: Glucose + ATP

Step 2: F6P + ATP —"* . FdP + ADP

Vi

2PEP + 2ATP + 2NADH

Step 3: FdP + 2ADP + 2NAD*

Vek

Step 4: PEP + ADP + NADH EtOH + ATP + NAD*

V2

Step 5: ATP ADP

V.
Step 6: ATP + AMP — 2ADP

\

are the intracellular levels of fructose 6-phosphate (F6P), fructose diphosphate (FdP),
phosphoenolpyruvate (PEP), NADH, ATP, and ADP. Differential equations compris-
ing the unsteady-state material balances on these concentrations can readily be written
for a constant volume system with entry of glucose according to step 1 and exit of
ethanol according to step 4.

The resulting model is highly nonlinear and requires numerical solution. In order to
identify conditions under which the model will generate oscillations, methods of
nonlinear bifurcation analysis were applied.”® In this analysis, the steady state of the
system is first evaluated for a given set of model parameters. Subsequently, the
corresponding linearized dynamic model is evaluated by calculating the Jacobian of
the original nonlinear differential equations and evaluating all partial derivatives so
obtained at the steady-state conditions. Eigenvalues of this Jacobian matrix charac-
terize the local dynamic behavior of the linear system. When model parameters are
changed such that eigenvalues with the largest real parts progress from negative real
part complex numbers to positive real part complex numbers, a bifurcation occurs.
Accompanying the bifurcation is the loss of stability of the steady state and the
appearance of new steady states or new dynamic structures such as a limit cycle. The
eigenvalue configuration that crosses the imaginary axis of the complex plane (as
bifurcation occurs) determines the possible types of local nonlinear dynamic behavior
that result.?®

FIGURE 3 shows stability diagrams in parameter space evaluated using this
procedure. The two different figures correspond to different values of the ATP
consumption rate constant, k, (step 5). The abscissa in both diagrams is the maximum
velocity of the pyruvate kinase reaction scaled by the maximum velocity of the PFK
reaction, and the ordinate in both is the rate of glucose uptake similarly scaled. The
indicated domains show areas of parameter values in which no steady-state solution
exists, in which the steady-state solution is unstable, and in which the steady state is
locally stable (all Jacobian eigenvalues have negative real parts). The boundaries
separating stable from unstable regions denote parameter values for which bifurcation
occurs. Through this type of analysis, it is possible to get some indications of the
parameter combinations that correspond to interesting transient behavior. It is
significant to note that this analysis involves only algebraic equations and that
numerical integration of the full set of nonlinear equations is not necessary. However,



