


’V@'r -

Ve @ i

Mathematical Problems of
Relativistic Physics

by ‘
-IRVING E. SEGAL
PROFESSOR OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

WITH AN APPENDIX ON
Group Representations in Hilbert Space
by
GEORGE W. MACKEY
PROFESSOR OF MATHEMATICS, HARVARD UNIVERSITY

1963
AMERICAN MATHEMATICAL SOCIETY
PROVIDENCE, RHODE ISLAND ‘



Copyright © 1963 by the American Mathematical Society

The Summer Seminar was conducted, and the proceedings
prepared in part, by the American Mathematical Society
under the following contracts and grants:
. Grant NSF-G12432 from the National Science Founda-
tion.

Contract No. AT(30-1)-2482 with the United States
Atomic Energy Commission.

Contract Nonr-3081(00) with the Office of Naval Research.

Contract DA-19-020-ORD-5086 with the Office of
Ordnance Research.

All rights reserved except those granted to the United States
Government, otherwise, this book, or parts thereof, may not
be reproduced in any form without permission of the
publishers.

" Library of Congress Catalog Card Number 62-21480

Printed in the United States of America



-»

>~

-

Foreword

_This is the second of a series of four volumes which are to contain the
Proceedings of the Summer Seminar on Applied Mathematics,

-arranged by the American Mathematical Society and held at the

University of Colorado for the period July 24 through August 19,
1960. The Seminar was under the sponsorship of the National
Science Foundation, Office of Naval 'Research, Atomic Energy
Commission, -and the Office of Ordnance Research.

For many years there was an increasing barrier between mathematics
and modern physics. The separation of these two fields was regret-
table from the point of view of each—physical theories were largely
isolated from the newer advances in mathematics, and mathematics
itself lacked contact with one of the most stimulating intellectual
developments of our times. During recent years, however, mathe-
maticians and physicists have displayed alacrity for mutual exchange.
This Seminar was designed to enlarge the much-needed contact which
has begun to develop. .

‘The purpose of the Seminar was primarily instructional, with
emphasis on basic courses in classical quantum theory, quantum
theory of fields and elementary particles, and statistical physics,
supplemented by lectures specially planned to complement them.
The publication of these volumes is intemded to extend the same
information presented at the Seminar to a much wider public than
was privileged to actually attend, while at the same time serving as a
permanent reference for those who did attend. .

Following are members of a committee who organized the program
of the Seminar:

Kurt O. Friedrichs, Chairman
Mark Kac

Menahem M. Schiffer
George E. Uhlenbeck

Eugene P. Wigner

Local arrangements, including the social and recreational program,
A\



vi FOREWORD

were organized by -a committee from the University of Colorado, as
follows:

Charles A. Hutchinson

Robert W. Ellingwood

The enduring vitality and enthusiasm of the chairmen, and the
cooperation of other members of the university staff, made the stay
of the participants extremely pleasant; and the four agencies which
supplied financial support, as acknowledged on the copyright page,
together with the Admissions Committee, consisting of Bernard
Friedman, Wilfred Kaplan, and Kurt Q. Friedrichs, Chairman, also
contributed immeasurably to the successful execution of the plans for.
the Seminar. '

The Seminar opened with an address given by Professor Mark Kac,
Department of Mathematics, Cornell University, on the subject “A
Mathematician’s Look at Physics: What Sets us Apart and What
- May Bring us Together.” Afternoons were purposely kept free to
give participants a chance to engage in informal seminars and
discussions among themselves and with the distinguished speakers on
the program. ’

Editorial Committee

V. BARGMANN
G. UHLENBECK
M. Kac, CHAIRMAN



Preface

This book gives the approximate text of a course of eight lectures
from combined rigorous mathematical and physically conceptual view-
points, supplemented by two more purely mathematical lectures. The
main purpose is to provide an up-to-date introduction, for the mathe-
matically trained reader, to the central mathematical features of
fundamental relativistic physics. While we have aimed for accuracy
and scope of perspective rather than for completeness of detail, this
purpose itself seemed better served by the inclusion of several detailed
discussions and the omission of any significant treatment of many
important topics, whose inclusion would not in our judgement have
altered the essential form which we have attempted to delineate. In
particular, the theory is very largely presented in terms of Bose-
Einstein quantum fields, Fermi-Dirac fields being brought in only very
briefly and in a descriptive way.

A relatively informal lecture style seemed the best adapted to the
quite challenging task of formulating the mathematically intelligible
essence of such a complex and sophisticated subject as quantum field
and particle theory with the requisite conciseness. No attempt has
been made to change this form of presentation in the printed text, in
view of its apparent appropriateness for this task.

While the mathematical beauty and inevitability of many parts of
modern relativistic physics are now clearly visible, there remain
unresolved foundational questions, which in fact dominate the scientific
area being considered. It is our conviction that quantum field theory,
at least, is on the verge of becoming mathematically firmly established,
and will in fact in a few years be recognized as closely parallel to the
analytical theory of functionals over infinite-dimensional non-linear
manifolds admitting group-invariant differential-geometric structures.
In any event, we hope to have given some measure of the recent

advances in the subject, and to have conveyed some feeling for the
ix
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magnificent intuitive scientific structure which has yet to be fully
understood mathematically.

Special thanks are due Leonard Gross and Dav1d Shale for scientifi-
cally useful comments, as well as to the former for help with the
orxgmal notes.
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INTRODUCTION

Varieties of Approaches

To clarify our general intentions and purposes in these chapters, let
us review very briefly the varieties of approaches to quantum fields and
particles which are currently popular. Although the ultimate aims of
many theoreticians are rather similar, involving mainly an increase in
our understanding of fundamental physical phenomena, their shorter-
term objectives.are quite varied, so much so that fundamental theoreti-
cal physics has a rather fragmented appearance at present.

The traditional approach effectively regarded theoretical physics as
a game whose purpose was to derive from simple theoretical principles
the abstruse numbers obtained in laboratory experiments on particles;
this description is a variant of one due to Dirac. The great success of
Dirac, Heisenberg, Schrodinger, and many others at this game during
the late twenties laid incidentally the foundations of modern quantum
theory. But in the past thirty years the game has proved so difficult
that people have generally felt forced to modify its rules in one way or
another.

The success of the renormalization theory initiated in clear-cut form
chiefly by Feynman, Schwinger, and Tomonaga, in computing with
great accuracy quantum radiation effects on the electron, represents the
most remarkable theoretical explication of fundamental physical data
in the past thirty years. It was based however on a certain relaxation
of the rules permitting the use of an ad hoc argument at a crucial stage
in the computation to resolve a serious difficulty, i.e. eliminate the so-
called divergences to which the theory and mathematical procedure
led. This remains the case today despite the considerable simplifica-
tions and clarifications due to Dyson, Ward, Salam, van Hove and his
associates, and many others.

More recently the * ‘axiomatic” schools which have emerged from
this situation have surpassed the traditional approach in logical
clarity, utilizing an explicit rather than implicit statement of their
fundamental principles. They have concentrated on increasing un-

derstanding of the meaning, scope, and general implications of
xi
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quantum field theory, and have effectively given up the attempt to
compute experimental data from theoretical principles. The most
active of these ‘‘schools,” including notably that of Kéllén-Wightman
and that of Lehmann-Symanzik-Zimmermann (to both of which -
Haag and Jost have made significant contributions), are rather
mathematical in spirit but do not always distinguish between mathe-
matically rigorous and partially heuristic definitions and results.
From an overall point of view, however, the main problem here is the
lack as yet of non-trivial examples of systems satisfying the axioms,
i.e. systems involving real emission and absorption of particles.

Roughly at the other end of the theoretical spectrum from the axio-
matic schools are those concerned chiefly with the correlation of
experimental data by means of approximations to and heuristic
techniques in quantum field theory of varying degrees of physical
motivation and, unfortunately, quite uncertain reliability. In any
event, the ideas of Chew, Goldberger, and Low have proved to be
particularly useful in reducing the large and rapidly growing volume
of experimental data in nuclear physics. The technique of so-called
* dispersion relations*> has been widely used for a substantial time, and
some of the relations have been supported by experimental evidence,
but -a clear-cut formulation and derivation of the relations within a
rigorous mathematical framework has not yet been given, and it also
seems quite difficult in the nature of things to make a conclusive
experimental test of the relations, since, unlike the familiar relations
that have been so tested, the checking of an individual numerical
equality in a dispersion relation necessarily involves measurements at
all, including arbitrarily high, energies.

These three schools have certain connections, a particularly interest-
ing and actively investigated one being that between the empirically-
oriented- and the axiomatic schools via the theory of dispersion
relations. But on the whole there does not appear to be much prospect
for their fundamental unification in the foresecable future. On the
other hand, until the elementary question, of what, precisely, a quantum
field theory consists of, is answered in satisfactory physical and
- mathematical terms, there are insufficient rational grounds for
pessimism or optimism,

A pure mathematician who is interested in fundamental physics will
see at once that there is another possible approach, that of building up
on the bedrock of rigorous mathematics, while keeping as close as
possible to the ideas that emerge from empirical practice. Ten years
ago such an approach might have seemed very naive, but by now it is
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clear that the rigor and mathematical method, far from proving
burdensome, enable one to deal simply and definitely, if in a rather
sophisticated way, with some of the really significant theoretical .
questions; and that the close connection between that which is mathe-
matically viable and physically meaningful is a rather general feature
of the situation, and not limited to such cases as that treated by Bohr
and Rosenfeld in their classical work on the measurability of the
electromagnetic field.

Our purpose here is mainly to treat those parts of the theory of fields
and particles which are now available in a rigorous, compact, and
general form. The solution of the relevant problems has tended to
lead to new problems, some of which we shall describe. We shall have
to pay the price of increasing at least temporarily the difficulty of
making a dictionary for translating between experimental physics and
mathematics. We must not expect too much direct physical contact
too soon, in view of the very substantial complications inherent in any

" comprehensive theory conceivably applicable to elementary particle

interactions. But the pursuit of this game of capturing modern physical
ideas and principles in rigorous and simple mathematics is a reasonable
and interesting activity in itself. We think moreover that there are now
visible lines of development offering definite promise of dealing
effectively with physically interesting relativistic interactions.

From a purely mathematical point of view the main mathematical
fields pertinent to the general theory of particles and fields are:

1. Operator theory (especially operator algebras).

2. Theory of group representations (especially of the Lorentz and

other physical symmetry groups).

3. Theory of functionals.

4, Theory of partial differential equations.
Large parts of these subjects are relevant here, in fact a year’s course
on each of them would not be amiss. Of course, here we can treat only
a few aspects of special relevance. We shall say only a little about
operator theory, and less about group representations, as these will be
treated in Professor Mackey’s chapters. We shall discuss analysis in
function space, because of its relevance and relative novelty, and note
its relation to the line of development originating with the work of
Wiener on Brownian motion. We shall do little with the theory of
partial differential equations, partly because the aspects of the theory
of greatest relevance—the global spectral theory of variable coefficient
and non-linear hyperbolic equations—are as yet rather undeveloped.
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CHAPTER 1

Quantum Phenomenology

We begin by treating the notion of a physical system, keeping as

closely as possible to the use of concepts having a fairly direct empirical

or physically intuitive significance. The fundamental object associated
with a physical system may be taken either as an observable or as a
state. The former concept seems simpler from a naive point of view,
and leads to a viable theory in terms of which state may be treated
quite effectively, so we shall start with observable as a fundamental
undefined notion. _

We should mention parenthetically that the early formulation of
quantum phenomenology asserted that: (1) an observable is a self-
adjoint operator in a Hilbert space; (2) a state is a vector ¢ in this
space; the connection between (1) and (2) being that the expectation
value of A in the state ¢ is (Ay, ¢). . These “axioms™ are technically
simple, but they are thoroughly unintuitive and ad hoc. In addition, it
has turned out recently that they are technically really effective only
in the case of systems of a finite number of degrees of freedom. In
fact certain of the ultraviolet divergences of quantum field theory
result indirectly from the inadequacy of the older phenomenology.
Therefore there is ample reason, both foundational and technical, to
prefer the more recent form, which is given below.

Now both physically and mathematically it appears that the bounded
observables play the fundamental role, the unbounded ones being
readily dealt with in terms of the bounded ones, as far as foundational
purposes are concerned. Taking e.g. a one-dimensional quantum-
mechanical particle, no given finite physical apparatus can conceivably
accurately measure the momentum p, once this momentum goes beyond
a certain limit. Now one may construct larger and more refined
apparatus, and thereby for each finite n, measure F,(p), where

Fy(x) = x for |x| £ nand F,(x) = say n sgn n for (x| > n. That is
one can measure the infinite sequence of observables F,(p), F.(p), - --,
each of which is bounded; and p itself is not measurable directly but

only as a limit of such a sequence, and so involves an unphysical
1
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infinity of experiments. On the other hand, mathematically we are en-
titled to look ahead a bit, to the first axioms of early quantum pheno-
menology, to the effect that an observable is a self-adjoint operator in
a Hilbert space. The well-known great difficulty of performing effec-
tively simple algebraic operations on non-commuting self-adjoint
operators together with the various possibilities for treating unbounded
in terms of bounded operators, strongly suggest the limitation to the
bounded ones. .

So we consider to begin with only the bounded observables of the
given physical system. From an intuitive point of view it is clear that
if A is a bounded observable and « is a real number, then «A4 is a
bounded observable; it is measured simply by measuring 4 and multi-
plying the result by «. Similarly 42 is a bounded observable, measured
by measuring 4 and squaring the result. Now if B is another observ-
able, the sum 4 + B and product AB can be similaily defined only
when A4 and B are simultaneously observable. We may however de-
fine A + B ina more indirect physical fashion as that observable whose
expectation in any state is the sum of the expectations of 4 and of B.
Intuitively it is plausible that an observable may be reconstructed from
its expectation values in all states; alternatively this definition may be
regarded as a restriction on the states of the system. On the other
hand, the product AB may not be defined in a similar fashion because
it is not even true for simultaneously observable 4 and B that the
expectation value of the product is the product of the expectation
values (as is familiar in the theory of probability, whose observables
are usually called “random variables ).

Thus it is physically reasonable to postulate that the bounded
observables of the physical system form a-type of algebra, the relevant
operations being multiplication by scalars, squaring and addition of
observables, but not multiplication in general. However, in view of
the indirect character of the definition of addition, the full reasonable-
ness of the assumption that two observables can be added will follow
only if the theory which is built up from such assumptions has as a
logical consequence the rationalizing assumptions that the expectation
value of the sum of two observables is the sum of their expectation
values, in a particular state, and that any observable can be recovered
from its expectation values.

In addition it is reasonable to assume that there is a unit observable
I whose expectation value in every state is unity, and that the usual
rules for the reduction of measurements of simultaneously measurable
observables are valid. This last requirement turns out to be needed
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only in the form
Ar ° Aa = Ar+s, ((ZA)' = arAr
if the pseudo-product 4 - B is defined by the equation

1

A © B = Z [
and A" is defined recursively by the equations

A% =1, AT =Aec A1,

Since A o B coincides with the phenomenological product described
above .when A4 and B are simultaneously observable, the present
requirements have immediate intuitive validations.

Thus we have rationalized the following mathematical axiom:

(4 + B)* — (4 — B)?],

PHENOMENOLOGICAL POSTULATE, ALGEBRAIC PART : A physical system is
a collection of objects, called (bounded) observables, for which operations
of multiplication by a real number, squaring, and additioti are defined, and
satisfy the usual assumptions for a linear vector space as well as those
involving the squaring operation given above.

As a mathematical example, consider the set of all bounded hermitian
(linear, everywhere defined) operators on a Hilbert space. It is obvious
that with the usual algebraic operations the foregoing postulate is
satisfied. It may be helpful to note incidentally that the conventional
product of operators is not meaningful within this system, since the
product of two hermitian operators will again be hermitian only when.
they commute; while the pseudo-product 4 - B = (4B + BA)/2 in the
present case has for non-commuting hermitian 4 and B no physwal
interpretation.

Now the main result we need in the present connection is the

BASIC PHENOMENOLOGICAL PRINCIPLE: Any physical system is deter-
mined in all its physically observable aspects by its algebra of bounded
observables.

That is to say, two systems whose bounded observables may be
brought into’ one-to-one correspondence, in such a fashion that sums,
squares, and products by real numbers correspond, are physically
identical—apart from the labelling of the observables

To explain more precisely what is meant by a ““ physically observable
aspect,” let us introduce the key notions of state, pure state, and
spectral (exact possible) value of an observable. From an empirical
standpoint, a state E exists only as a rule which assigns to each bounded
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observable its expectation value in the state; any possible metaphysical
distinction between the state and the corresponding functional on the
observables is irrelevant for empirical objectives. Accordingly, we
define a state as this functional and the following properties of a state
E have a clear intuitional validity:
1. Linearity: E(A + B) = E(A) + E(B),
E(cA) = « E(A),

if A and B are any bounded observables and « is a real number.

2. Positivity: E(A%20.

3. Normalization: E(I) = 1.

Thus on a rather conservative physical basis a state must be some
sort of normalized positive linear functional on the observables. For
basic phenomenological purposes this is all that turns out to be re-
quired for a state, and so we follow von Neumann in defining a state as
such a functional. '

Now if a system is in a state E with probability « and in a state E’
with probability «’, where « + «’ = 1 and « > 0, o’ > 0, the effective
state of the system is E”, where

E"(4) = «E(4) + «'E"(A).

The state E* is called a mixture of the states E and E’ and following
Weyl we call a state pure if it cannot be represented as a mixture of two
distinct states. It is evident that it is the pure state that plays the
fundamental part in non-statistical mechanics; an experiment of
maximal theoretical accuracy will yield a pure state of the system.

To clarify these notions, consider briefly the system of all bounded
hermitian operators in a Hilbert space 3. If ¢ is any unit vector in J#,
the functional E defined by the equation

E(4) = (44, ¥)

is easily seen to be a state. It is actually a pure state, as can be seen in
a fashion that will be indicated later. In many conventional treat-
ments of quantum mechanics, the vector ¢ is called a state, but it is
evidently of quite another character from the functional E which is
here defined as a state. In particular ¢ is incompletely physically
observable, any multiple of ¥ by a number of unit modulus being
physically indistinguishable from it. Here ¢ will be referred to as a
state vector or wave function for the state E. Incidentally, it is only in
the trivial case of the finite-dimensional Hilbert space # that every
pure state has the foregoing form; for an infinite-dimensional space
there are others, which can arise, e.g., from the continuous spectrum
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which may manifest itself for operators in an infinite-dimensional

space.
An example of a mixed state is provided by one of the form

E(A) = tr (4D),

where D is a non-negative self-adjoint operator of absolutely con-
vergent trace, and total trace unity. D is then uniquely determined by

" E and is called the “von Neumann density operator (matrix).”” Sucha
state is pure if and only if D is of unit rank, in which case it arises from
a wave function in the fashion just indicated.

To arrive at the notion of spectral value, the variance of an observ-
able A in a state E may be reasonably defined as the quantity E(A42) ~
E(A)?, which is automatically non-negative by virtue of the positivity
of the functional E. In line with this, 4 may be said to have an exact
value in the state E in case its variance vanishes; and the values E(4)
of A in all such states designated as the spectrum of the observable A.

Now it is clear from the definitions of state, pure state, and spectral
value, that they are wholly determined by the algebra of bounded
-observables. But this is significant only if states and pure states exist
in ample number, and if spectral values exist, and relate to states in the
usual probabilistic fashion (i.e. the expectation of thé observables is the
average of the spectral values with respect to a probability distribution
determined by the state), etc. To prove such results the phenomeno-
logical postulate above must be supplemented by a postulate making
possible the application of analytical methods.

To arrive at a physically meaningful postulate that will be mathe-
matically effective, consider the properties which may be anticipated
for the bounds of the observables, whose finiteness has not thus far
been utilized. The bound represents, in an intuitive physical way, the
greatest possible absolute value for the observable. 'This interpretation

_ together with a quite moderate amount of refiection shows the physical
basis for the

PHENOMENOLOGICAL POSTULATE, ANALYTICAL PART: To.each observ-
able A is assigned a “‘bound,” designated | Al, in such a way that the
JSollowing conditions are satisfied:

i. |4] =2 0 and |A| =0 ifand only if A = 0.

il. Jed| = |a| |4| and |4 + B| < |4} + |B|.

iii. The collection of all observables is complete with respect to>the
metric. determined by the bound, i.e. if Ay, A, is a sequence of
observables such that |A, — A, || >0 as m, n — co, then there exists
an observable A such that |A, — A] — 0.
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iv. [A4%] = |A4|? and |4* — B?| = Max [|42], | B*|].
v. A% is a continuous function of A, i.e. if A, — A, then A2 — A2

Conditions i and ii have a direct physical justification. The condi-
tion iii is virtually a matter of convenience, for an incomplete system
could always be completed ; an observable A4 could be defined if neces-
sary, its expectation value in a state being explicitly obtainable as the
limits of the expectation values of the 4,. Condition iv takes a slight
amount of reflection for its intuitive justification. Condition v merely
asserts that if two observables are close (as measured by the bound of
their difference) then so are their squares.

For an example, consider again the system of all bounded hermitian
operators on a Hilbert space, with | 4| defined as the usual bound of
the operator 4. That is, |A| is the least upper bound of the Hilbert
space norms |4y as ¢ varies over all unit vectors, or equivalently, for
hermitian operators, of |(4y, ¥)|. All of the foregoing conditions
follow almost trivially.

On the strength of the combined algebraic and analytical parts of the
phenomenological postulates, all of the physically plausible and con-
ventionally accepted principles of quantum phenomenology may be
rigorously established. The proofs are based on now familiar results
and methods of abstract analysis, including notably the Stone-Gelfand
representation theory and such results in linear analysis as the Hahn-
- Banach, Krein-Milman, and Riesz-Markoff theorems.

Among the results are:

1. There exists an ample supply of pure states, in the sense that two
observables having the same expectation values in all pure states must be
identical. In particular, the justification for the:assumption that two
observables can be added is completed.

2. Any observable admits a closed set of spectral values, and the
expectation of the observable in anﬂz state is the average of these spectral
values with respect to a probability distribution on them canonically
determined by the state. Specifically, this distribution may be defined
as that with characteristic function E(e*4), where E is the state and 4
the observable (here €'4 is defined in the obvious fashion, or alter-
natively, E(e*4) may be replaced by E(cos t4) + iE(sin t4), where
cos t4 and sin ¢4 are defined by the demonstrably convergent, con-
ventional power series expansions). It is not.difficult to see that this
function (of ¢) is positive definite and the Fourier-Stieltjes transform of
a probability distribution.

3. The smallest closed system of observables (in the sense of the



