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Introduction

Traditionally, field theory had its main thrust of de-
velopment in high energy physics. Consequently, the conventional
field theory courses are taught with a heavy emphasis on high energy
physics. Over the years, however, it has become quite clear that the
methods and techniques of field theory are widely applicable in many
areas of physics. The canonical quantization methods, which is how
conventional field theory courses are taught, do not bring out this fea-
ture of field theory. A path integral description of field theory is the
appropriate setting for this. It is with this goal in mind, namely, to
make graduate students aware of the applicability of the field theoretic
methods to various areas, that the Department of Physics and Astron-
omy at the University of Rochester introduced a new one semester
course on field theory in Fall 1991.

This course was aimed at second year graduate stu-
dents who had already taken a one year course on nonrelativistic
quantum mechanics but had not necessarily specialized into any area
of physics and these lecture notes grew out of this course which I
taught. In fact, the lecture notes are identical to what was covered in
the class. Even in the published form, I have endeavored to keep as
much of the detailed derivations of various results as I could - the idea
being that a reader can then concentrate on the logical development

of concepts without worrying about the technical details. Most of the
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concepts were developed within the context of quantum mechanics
- which the students were expected to be familiar with - and subse-
quently these concepts were applied to various branches of physics. In
writing these lecture notes, I have added some references at the end
of every chapter. They are only intended to be suggestive. There is
so much literature that is available in this subject that it would have
been impossible to include all of them. The references are not meant
to be complete and I apologize to many whose works I have not cited
in the references. Since this was developed as a course for general
students, the many interesting topics of gauge theories are also not
covered in these lectures. It simply would have been impossible to do

justice to these topics within a one semester course.

There are many who were responsible for these lecture
notes. I would like to thank our chairman, Paul Slattery, for asking me
to teach and design a syllabus for this course. The students deserve
the most credit for keeping all the derivations complete and raising
many issues which I, otherwise, would have taken for granted. I am
grateful to my students Paulo Bedaque and Wen-Jui Huang as well as
to Dr. Zhu Yang for straightening out many little details which were
essential in presenting the material in a coherent and consistent way.
I would also like to thank Michael Begel for helping out in numerous
ways, in particular, in computer-generating all the figures in the book.
The support of many colleagues was also vital for the completion of

these lecture notes. Judy Mack, as always, has done a superb job as
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far as the appearance of the book is concerned and I sincerely thank

her. Finally, I am grateful to Ammani for being there.

Ashok Das,
Rochester
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Chapter 1

Introduction

1.1 Particles and Fields

Classically, there are two kinds of dynamical systems that
we encounter. First, there is the motion of a particle or a rigid body
(with a finite number of degrees of freedom) which can be described by
a finite number of coordinates. And then, there are physical systems
where the number of degrees of freedom is nondenumerably (non-
countably) infinite. Such systems are described by fields. Familiar
examples of classical fields are the electromagnetic fields described by
E(%,t) and B(,t) or equivalently by the potentials (6(3,1), A(Z, 1))
Similarly, the motion of a one-dimensional string is also described by
a field ¢(Z,t), namely, the displacement field. Thus, while the coor-

1



2 CHAPTER 1. INTRODUCTION

dinates of a particle depend only on time, fields depend continuously
on some space variables as well. Therefore, a theory described by
fields is usually known as a D+1 dimensional field theory where D
represents the number of spatial dimensions on which the field vari-
ables depend. For example, a theory describing the displacements of
the one-dimensional string would constitute a 141 dimensional field
theory whereas the more familiar Maxwell’s equations (in four dimen-
sions) can be regarded as a 3+1 dimensional field theory. In this
language, then, it is clear that a theory describing the motion of a
particle can be tegarded as a special case, namely, we can think of

such a theory as a 0+1 dimensional field theory.

1.2 Metric and Other Notations

In these lectures, we will discuss both nonrelativistic as
well as relativistic theories. For the relativistic case, we will use the
Bjorken-Drell convention. Namely, the contravariant coordinates are

assumed to be

2= (t,§) p=0,1,23 (1.1)

while the covariant coordinates have the form

x“ = n;wzy = (t, —1—:‘) (12)
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Here we have assumed the speed of light to be unity (c=1). The
covariant metric can, therefore, be obtained to be diagonal with the
signatures

Nuv = (+’—r_"") (13)

The inverse or the contravariant metric clearly also has the same form,

namely,
7 =(+-,—--) (1.4)

The invariant length is given by
zZ_sz 17 — m v___t2_~2
= p=N Ty =Ny = x (15)

The gradients are similarly obtained from Egs. (1.1) and (1.2) to be

5] d -

% ==V (16)
o 15} -

= = (. —

0 oz, (3 V), (1.7)
so that the D’Alembertian takes the form
0 =049, = 18,0, = 2o _

- #—77” uu—ﬁ_v (18)

1.3 Functionals

In any case, it is evident that in dealing with dynamical

systems, we are dealing with functions of continuous variables. In
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fact, most of the times, we are really dealing with functions of func-
tions which are otherwise known as functionals. If we are considering
the motion of a particle in one dimension in a potential, then the
Lagrangian is given by

L(z,4) = %méz —V(z) (1.9)

where z(t) and &(t) denote the coordinate and the velocity of the
particle and the simplest functional we can think of is the action

functional defined as
Stz = [ dt L(z,2) (1.10)

Note that unlike a function whose value depends on a particular point
in the coordinate space, the value of the action depends on the entire

trajectory along which the integration is carried out.
Thus, a functional has the generic form
Flf] = [ dz F(f(z)) (111)
where, for example, we may have
F(f(z)) = (f(=))" (1.12)

Sometimes, one loosely also says that F (f(z)) is a functional. The .
notion of a derivative can be extended to the case of functionals in a

natural way through the notion of generalized functions. Thus, one
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defines the functional derivative or the Gateaux derivative from the
linear functional

F'[v]=g;F[f+ev] = [az SEUL, (1.13)

“ ) "

Equivalently, from the working pomt of view, this simply corresponds

to defining

SF(() _ . FUf(z) + bz~ 9) - Ff(z)
T T . (114)

It now follows from Eq. (1.14) that

§(=)

570 ==Y (1.15)

The functional derivative satisfies all the properties of a

derivative, namely, it is linear and associative,

SRlf) | SRlf]

5f( )(Fl[f]+F2[f]) = 6f(:c) 5f(1:)
_ 6A[f] S F3[f]
6f( 57 BB = 5 BIA+ Rlflgzs (116)

It also satisfies the chain rule of differentiation. Furthermore, we now

see that given a functional F(f], we can Taylor expand it in the form

Fif] = /da: Po(z) + fd::;dzz Py(zy,z2) f(z2)

+ [ dz1dzodzs Py(z1,25,23) f(z2)f(zs) + -+ (1.17)



