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PREFACE

Thank you for reading this book! My sincere aim is that it is use-
ful—quality information, quickly understood.

Some related articles and pointers are at www.craiglarman.com.
Please contact me with questions at craig@craiglarman.com.

Typographic Conventions

This is a basic point of emphasis. Book titles are also italicized.

This is a noticeable point of emphasis 1 wish to make easy for
you to see. Usually, so you can skim pages and pick out key ideas.

This is a new term in a sentence.
This is a reference [Bob67] in the bibliography.
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Craig Larman serves as Chief Scientist for Valtech, an interna-
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Craig is the author of Applying UML and Patterns: An Introduc-
tion to Object-Oriented Analysis and Design, the world’s best-sell-
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After a failed career as a wandering street musician, he built sys- -
tems in APL, PL/I, and 4GLs in the 1970s. Starting in the early
1980s—after a full recovery—he became interested in artificial
intelligence (having little of his own) and knowledge representa-
tion, and built knowledge systems with Lisp machines, Lisp, Pro-
log, and Smalltalk. He has played bad lead guitar in his very part-
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time band, the Changing Reqitirements (it used to be called the
Requirements, but some band members changed...).

Craig has a B.S. and M.S. in computer science from beautiful
Simon Fraser University in Vancouver, Canada.
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adaptation of the requirements and design in iteration

o
Buildforsome | feedback | gqen oome | feedback | pudc e
requirements requirements requirements
v v
Y @
A three-week iteration. The RELEASE
duration is fixed, or timeboxed. i CUSTOMETRg
[ The system grows incrementall. I
A three-week iteration (for example). A mini-project that Note that L
includes work in most disciplines, ending in a stable executable. although an
Sample work in most
Disciplines disciplines, the
. : ] relative effort and
Requirements - i emphasis change
4_/\ over time.
, R A, o S The height of
Programming , : these humps is
. it
Test * apoe
iterations :
‘ Strict waterfall tial
M LT k i Wi (sequential)
classified in terms of
their number and 2
length of iterations o |
(Cycles), and how Few docs & f Ceremony Documents
formal they are in Few steps ——% Formal steps
terms of o - G e
documentation,
reviews, defined steps,

cultures.

and so on (Ceremony).

Different profiles fit
different projects and

| Many short iterations (5 days)




The Agile Manifesto*

Individuals and interactions  over brocesses and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

The Agile Principles*

1. Our highest priority is to satisfy the 8. Agile processes promote sustainable
customer through early and continuous  development.
delivery of valuable software.

2. Welcome changing requirements, even 9. The sponsors, developers, and users
late in development. Agile processes har-  should be able to maintain a constant
ness change for the customer's competi-  pace indefinitely.

tive advantage.

3. Deliver working software frequéntly, 10. Continuous attention to techmical
from a couple of weeks to a couple of excellence and good design enhances
months, with a preference to the shorter  agility.

time scale. ’ :

4. Business people and developers must  11. Simplicity—the art of maximizing
work together daily throughout the the amount of work not done—is essen-
project. ' tial.

5. Build projects around motivated indi-  12. The best architectures, require-
viduals. Give them the environment and  ments, and designs emerge from self-
support they need, and trust them to get  organizing teams.

the job done.

6. The most efficient and effective method  13. At regular intervals, the team

‘of conveying information to and within a  reflects on how to become more effec-
development team is face-to-face conver-  tive, then tunes and adjusts its behavior
sation. accordingly.

7. Working software is the primary mea-
sure of progress.

* From the Agile Alliance. www.agilealliance.com
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INTRODUCTION

Logic is the art of going wrong with confidence.
—Joseph Wood Krutch

OVERVIEW
Q What’s in this book?

Q Predictable versus new product development.

What value will you get from studying this book, an introduction
to iterative and agile methods?

First, you will know the key practices of four noteworthy methods,
Scrum, Extreme Programming (XP), the Unified Process
(UP), and Evo (one of the original iterative methods). This is a
“Cliffs Notes” summary, each chapter has something useful to you
as a manager, developer, or student of development methods.

Second, your learning curve will be shortened, as this is a dis-
tilled learning aid. The four method chapters have the same struc-
ture, to speed comprehension and compare-contrast. There’s a
FAQ chapter, a “tips” chapter of common practices, and plenty of
margin pointers to related pages—paper hyperlinks.

Third, you will know motivation and evidence. Some organiza-
tions accept the value of iterative development, but others are still
reluctant. If you need to make a case for an iterative project exper-
iment, you will find in this book the key reasons, research, exam-
ples of large projects, standards-body acceptance, a business case,
and promotion by well-known thought leaders through the

Scrum p. 109
XPp. 137
UPp. 173
Evop. 211

FAQ p. 297
tips p. 247

motivation p. 49
evidence p. 63



1 — Introduction

- decades. The research and history sections are also of value to stu-
dents of software engineering methods.

Note that agile methods are a subset
of iterative methods; this book covers both types.

The chapters may be read in any order; the big picture is this:

1. Introduction, and predict-
able vs. inventive development.

2. Basic iterative and evolu-
tionary method practices.

3. Summary of agile principles
and methods.

4. An agile project story to pull
some ideas together.

5-6. Motivation and evidence
chapters for iterative and agile
methods; useful for some.

7-10. Four method summaries
on Scrum, XP, UP, and Evo.
Note: practices can be mixed.
11. A tips chapter that expands

on some of the method prac-
tices, plus others.

12. A frequently asked ques-
tions (FAQ) chapter.

Finally, people trump process. Every process book should probably

include this standard disclaimer:

Process is only a second-order effect.! The unique people, their
feelings, qualities, and communication are more influential.

Some problems are just hard, some people are just difficult.
These methods are not salvation.

1. A quote from the agile methodologist Alistair Cockburn.




Software Is New Product Development

SOFTWARE IS NEW PRODUCT DEVELOPMENT

Consider building mobile phones on an assembly line: It is possi-
ble to unambiguously define the specifications and construction
steps. After building some phones and measuring things, it is pos-
sible to reliably estimate and schedule the building of future
phones.

A different problem: Build a custom house. The owner wants to
use new environmentally friendly materials and methods, but
isn’t exactly sure what they want, and is going to change or clarify
their decisions as they see the house, costs, and weeks unfold.

At one end of the spectrum, such as manufacturing phones, there
are problems with low degrees of novelty or change, and high rates
of repeated identical or near-identical creation—mass manufac-
turing or predictable manufacturing.

At the other end, there are problems with high degrees of novelty,
creativity, and change, and no previous identical cases from which
to derive estimates or schedules. This is the realm of new product
development or inventive projects.

The development process, management values, planning and esti-
mation models appropriately associated with these two domains
are different (Table 1.1).

Predwtablem eturing L New Pmduct Development

It is possible to first complete | Rarely possible to create up-
specifications, and then build. |front unchanging and detailed
specs.

Table 1.1 predictable vs.
inventive projects



1 — Introduction

X New W-Deve@ment

Near the start, one can reliably

Near the beginning, it is not

estimate effort and cost. possible. As empirical data

emerge, it becomes increasingly
possible to plan and estimate.

It is possible to identify, define,
schedule, and order all the
detailed activities.

Near the beginning, it is not
possible. Adaptive steps driven
by build-feedback cycles are
required.

Adaptation to unpredictable
change is not the norm, and
change-rates are relatively low.

Creative adaptation to unpre-
dictable change is the norm.
Change rates are high.

Of course, the point is,

Most software is not a predictable or mass manufacturing
problem: Software development is new product development.

Plus, many projects use new and buggy technologies that exacer-
bate the degree of novelty and unpredictability. Note also it is a
new product for the inexperienced even if it has been done before.

Since predictable manufacturing is the wrong paradigm for soft-
ware, practices and values rooted in it are not helpful.

This mismatch lies at the heart of many of the challenges asso-
ciated with traditional approaches to running a software
project. '

A “waterfall” lifecycle, big up-front specifications, estimates,
and speculative plans applicable to predictable manufacturing
have been misapplied to software projects, a domain of inven-
tive, high-change, high-novelty work.




