l \ddis
- Wesle
HZ Books

Z

’Eﬁix.ﬁﬁﬁ

BIBETERE

AGILE & ITERATIVE
DEVELOPMENT
A Manager’s Guide

Fraig Larman

Agile Software Development Se
Alistair Cockbu d Jim Hi gh il th Series Editors

(%) CraiglLarman &
o T H AR #

\ina Machine Press

BIEEFE
EIEEE

- (F3R)

(%) Craig Larma

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China
Machine Press. .

Original English language title: Agile & Iterative Development: A Manager’s Guide
(ISBN 0-13-111155-8) by Craig Larman, Copyright © 2004. ’

. All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A4 #F R EN IR HPearson Education Asia Lid AR T R BF HAR . RE2H
MREBEF T, ARUERTREMEDREBANR.

BT PEARFIMEEAN (FEFEPEEE. RITEITREAPEEGEBEK) #
BRIT.

#$H E M A Pearson Education (FFAEBHHRER) ML WRE, THREELRSE
we.

MBIER, LR,
FHERWE LR RERTE ST F

ABEEIZS: A% 01-2006-0528
EHERSE (CIP) ¥R

RAEEA R FEERE (RCR) / (X) hig (Larman, C.) #F. —dbxt: HLRT
ARk AL, 2006.3

(BRI

4R Agile & Tterative Development: A Manager’s Guide

ISBN 7-111-18483-1

L. 0.8 .3k - B - SR - %X IV.TP311.52
e B A B SR CTPRIR G+ (2006) 250089128

PUR T AR A GesthssmE B 5 EAH229 BPECAFS 100037)
FiEgE: RIRE '
JEFCBHL IR ENRI - FreBEIL R ITHR R

20064E3 H % 1IRE LIRENRI

718mm x 1020mm 1/16 - 22.25E03k

E%:: 0001 - 2 500/

EHr: 45.005C

WES, WEET. B, 65, midEFHiER
A BEek: (010) 68326294

HhRE 8918

XEE LR, FREKOBEEHMES ERNERME, EHl5EREARH
A GRS T2 HORY; BERXHENES, FEEEZEBERRBHAT
FHEAARKEN. MENE. CEMENERS, XEN LR SHTREEETRD
g4, HRYLERTFE R AL R & AR MBCEN RIS, Bk~ EnSH
FHEEE, FOUER TR, ERETEROES, BEBERIE, XAF%
B0, KAMEHFASEEANREGRE. ‘

EE, EAREBEALASOED T, REGHENLSLEBRE, MEULALNE
kHZEY. XXMTBENEFTFRAMHIRFHBERIE, BRER; fElhBEHrRIRE
RERK I BREERE. FREGRBEAREBMERE. MARBEALHBIRT, £
HERXSEREXHENRZRREILHERRENZBEM DA T SEBEEZL.
Rk, 5l1E—HESMEFE T RILBAH X R E U EHLEE F AR REFRROESEM,
R St RN, BiREIERNHE RPN LHZE.

HUR Tl AR A B R BARA TR R HIRE “HREAKERS . B19984
Fih, HEBATRG TR ABKIE T #:E. BIEEMBEEM L. 23 LENTRE D,
#H115Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann% 3% & 4
MARBILTREFMNAEXRR, NEMNAEHEEHBEM P EEH Tanenbaum,
Stroustrup, Kernighan, Jim Gray#% kJfi &K@ —#L28ES, LU “THELBEAR 4
BRHAR, #igE%S]. HREER. ABEASCRENIE, WEARTXEANBKH GO
- Fk&IA . .

“HEHREAS" OHR TS TEANMEEOR AR, ERNS KPR
THEMEERS, SRR EHEETREMEERN LA fEBOES BH 4 %E
HEREPEAEE, ARSERAXPBOPEREF. £4, “HHEIFEAS" B4
HAR THEEA S, XEBEERETRTTREMOR, HEFSERRANERK
MRSZHE, PR SRBITT T ELOER.

BEFFRENDEZEMBM R ENRBREL, BHEF R EIMNIEILBEM TR
R FHE S A -GN EB . Ak, REATRMKSEREMONE, £ “REETF
RIEHRIZ FTHREARBFIRTHENLES: B “HRHBENS" 24, MR
b, MAIFREY “SHEEIRBE" ; RN, 5IELEETHHEMSS “Schaum’s
Outlines” RFIAR “LXBHMAINILIRF”. A THRIEX=ZENBHAURNYE, Rd
HT EAFH R RAEIIIRS , LEAREE T PERER. LRKE. BERE.
EBRE A%, EH A%, FEZERSE. ERA%. WilAk%. PEBHERE. WK

EIlkk%. BERREKRE. PEARKS. LRGSR KE. JLZBBR A%, il
K%, MBEEBRT K%, BMAE. BIE L%, PEERELELZLSMIFAITP.OZER
WERKFHRIBET BN SN SR EL 2 EAR “ERBFERE™. IFHMN
$2 416206 RS B I A0 R S

X=ZENPEm M EEF R OO ERMNREMNER, ARNEBENTEILRIERX
FlHBFEESITEN. KPFESHEMIBEAM. 1. T., Stanford, U.C. Berkeley, C. M.
U. FHR 2K EHRA. AUEETEREFET. S08EW. BERK. HEILGRE
. BaRE. RFEFEE. Z4TE. BEY. EE5ME. SREFZEAKEIHTEN
Wl ¥EEFENBEORE, MAESAHFEC—FANHABESREEZTE. ANHE2=1
AR, ARHCHASHFWILEMERRA. £X 5558 M0 HAKERISI 2T,
BEVCHETRIPRFNERPHABETAE.

BEIES . SHUNEBH . —KNEFEE. TEERVER. BAaNGE, XEREFER
MEBETREMHRIE, ERAMBIRERERE, IRMOERLERERIERX —
AR BN EEREY . BHHOHRAERRINNVEERSOEKN. EEA TV ZIHi%
EX BV LERHB IS THIE, BIOMWBRGEMT:

B, F-#Bf:: hzjsj@hzbook.com
BABIE: (010) 68995264

BeF&RMaE: JbRTERX Eh EdELS
HP B 4uFD: 100037

ERESERS

EAN
& %
Fh A
P 7 ¢
BB
s th
w K
®OR

(R EE I)

R E S
SE
FI7]
i &
&g
LESS
42 fe

XA
X8
FET
ik &) 2%
E W
J& R
AL B 35

X £
K&
W AF
BAfast
w9
X
WA=

For Julie, Haley, and Hannah

with love and thdnks

PREFACE

Thank you for reading this book! My sincere aim is that it is use-
ful—quality information, quickly understood.

Some related articles and pointers are at www.craiglarman.com.
Please contact me with questions at craig@craiglarman.com.

Typographic Conventions

This is a basic point of emphasis. Book titles are also italicized.

This is a noticeable point of emphasis 1 wish to make easy for
you to see. Usually, so you can skim pages and pick out key ideas.

This is a new term in a sentence.
This is a reference [Bob67] in the bibliography.

About the Author

Craig Larman serves as Chief Scientist for Valtech, an interna-
tional consulting and skills transfer company with divisions in
Europe, Asia, and North America. He also works globally as an
independent consultant, coach, and speaker.

Craig is the author of Applying UML and Patterns: An Introduc-
tion to Object-Oriented Analysis and Design, the world’s best-sell-
ing text on OOA/D and iterative development, translated to many
languages and used worldwide in industry and colleges.

After a failed career as a wandering street musician, he built sys- -
tems in APL, PL/I, and 4GLs in the 1970s. Starting in the early
1980s—after a full recovery—he became interested in artificial
intelligence (having little of his own) and knowledge representa-
tion, and built knowledge systems with Lisp machines, Lisp, Pro-
log, and Smalltalk. He has played bad lead guitar in his very part-

viii

time band, the Changing Reqitirements (it used to be called the
Requirements, but some band members changed...).

Craig has a B.S. and M.S. in computer science from beautiful
Simon Fraser University in Vancouver, Canada.

Acknowledgments

A special thanks to my friends and colleagues at Valtech, world-
class iterative developers, especially Tim Snyder.

Many thanks to the reviewers, including Alistair Cockburn, Clau-
dia Frers, Tom Gilb, Jim Highsmith, Ron Jeffries, Philippe
Kruchten, Niels Maloteaux, Gary Pollice, Ken Schwaber, and Jeff
Sutherland.

Thanks to Paul Petralia and Patti Guerrieri for shepherding.

Feedback from iteration N leads to refinement and

W)

adaptation of the requirements and design in iteration

o
Buildforsome | feedback | gqen oome | feedback | pudc e
requirements requirements requirements
v v
Y @
A three-week iteration. The RELEASE
duration is fixed, or timeboxed. i CUSTOMETRg
[The system grows incrementall. I
A three-week iteration (for example). A mini-project that Note that L
includes work in most disciplines, ending in a stable executable. although an
Sample work in most
Disciplines disciplines, the
. :] relative effort and
Requirements - i emphasis change
4_/\ over time.
, R A, o S The height of
Programming , : these humps is
. it
Test * apoe
iterations :
‘ Strict waterfall tial
M LT k i Wi (sequential)
classified in terms of
their number and 2
length of iterations o |
(Cycles), and how Few docs & f Ceremony Documents
formal they are in Few steps ——% Formal steps
terms of o - G e
documentation,
reviews, defined steps,

cultures.

and so on (Ceremony).

Different profiles fit
different projects and

| Many short iterations (5 days)

The Agile Manifesto*

Individuals and interactions over brocesses and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

The Agile Principles*

1. Our highest priority is to satisfy the 8. Agile processes promote sustainable
customer through early and continuous development.
delivery of valuable software.

2. Welcome changing requirements, even 9. The sponsors, developers, and users
late in development. Agile processes har- should be able to maintain a constant
ness change for the customer's competi- pace indefinitely.

tive advantage.

3. Deliver working software frequéntly, 10. Continuous attention to techmical
from a couple of weeks to a couple of excellence and good design enhances
months, with a preference to the shorter agility.

time scale. ’ :

4. Business people and developers must 11. Simplicity—the art of maximizing
work together daily throughout the the amount of work not done—is essen-
project. ' tial.

5. Build projects around motivated indi- 12. The best architectures, require-
viduals. Give them the environment and ments, and designs emerge from self-
support they need, and trust them to get organizing teams.

the job done.

6. The most efficient and effective method 13. At regular intervals, the team

‘of conveying information to and within a reflects on how to become more effec-
development team is face-to-face conver- tive, then tunes and adjusts its behavior
sation. accordingly.

7. Working software is the primary mea-
sure of progress.

* From the Agile Alliance. www.agilealliance.com

TABLE OF CONTENTS

1 Introduction 1

Software Is New Product Developmeynt 3
What's Next? 5
Web Resources 6

2 lterative & Evolutionary o

lterative Development 9

Risk-Driven and Client-Driven lterative Planning
12

Timeboxed lterative Development 13

During the Iteration, No Changes from External
Stakeholders 14

Evolutionary and Adaptive Development 15

Evolutionary Requirements Analysis 15

Early “Top Ten” High-Level Requirements and
Skillful Analysis 17

Evolutionary and Adaptive Planning 17

Incremental Delivery 20

Evolutionary Delivery 20

The Most Common Mistake? 21

Specific lterative & Evolutionary Methods 22

What's Next? 23

Recommended Readings 23

3 Agile 25

Agile Development 25

Classification of Methods 26

The Agile Manifesto and Principles 27

Agile Project Management 29

Embrace Communication and Feedback 30

Programming As If People Mattered 30

Simple Practices and Project Tools 31

Empirical vs. Defined & Prescriptive Process
32

Principle-Based versus Rule-Based 33

Sustainable Discipline: The Human Touch 33

Team as a Complex Adaptive System 34

Agile Hype? 34

Specific Agile Methods 35

What's Next? 39

Recommended Readings 39

4 Story 41

What's Next? 47
Motivation 49

The Facts of Change on Software Projects 50

Key Motivations for Iterative Development 51

Meeting the Requirements Challenge lteratively
55

Problems with the Waterfall 57

What's Next? 62

Evidence 63

Summary 64

Research Evidence 65

Early Historical Project Evidence 79

Standards-Body Evidence 87

Expert and Thought Leader Evidence 93

A Business Case for Iterative Development 100

The Historical Accident of Waterfall Validity?
102

What's Next? 107

Recommended Readings 107

7 Scrum 109

Method Overview 110

Lifecycle 113

Workproducts, Roles, and Practices 114
Values 126

Common Mistakes and Misunderstandings 127
Sample Projects 130 : -
Process Mixtures 131 '

Adoption Strategies 132

Fact versus Fantasy 133

Strengths versus “Other” 134

History 135

What's Next? 136

Recommended Readings 136

8 Extreme Programming 137

Method Overview 138

Lifecycle 142

Workproducts, Roles, and Practices 144
Values 155

Common Mistakes and Misunderstandings 156
Sample Projects 161

xXii

Process Mixtures 162 12 Frequently Asked Questions 297
Adoption Strategies 165 L .

Fact versus Fantasy 167 Question List 297

Strengths versus “Other” 168 Questions and Answers 299

History 170

What's Next? 171 13 Bibliography 329

Recommended Readings 171
9 Unified Process 173

Method Overview 174

Lifecycle 180

Workproducts, Roles, and Practices 184
Values 191

Common Mistakes and Misunderstandings 194
Sample Projects 199

Process Mixtures 201

Adoption Strategies 203

Fact versus Fantasy 205

Strengths versus “Other” 205

History 207

What's Next? 208

Recommended Readings 208

10 Evo 211

Method Overview 212

Lifecycle 217

Workproducts, Roles, and Practices 220
Values 237

Common Mistakes and Misunderstandings 238
Sample Projects 239

Process Mixtures 240

Adoption Strategies 242

Fact versus Fantasy 242

Strengths versus “Other” 243

History 244 :

What's Next? 245

Recommended Readings 245

1

-

Practice Tips 247

Project Management 248
Environment 275
Requirements 281

Test 292

INTRODUCTION

Logic is the art of going wrong with confidence.
—Joseph Wood Krutch

OVERVIEW
Q What’s in this book?

Q Predictable versus new product development.

What value will you get from studying this book, an introduction
to iterative and agile methods?

First, you will know the key practices of four noteworthy methods,
Scrum, Extreme Programming (XP), the Unified Process
(UP), and Evo (one of the original iterative methods). This is a
“Cliffs Notes” summary, each chapter has something useful to you
as a manager, developer, or student of development methods.

Second, your learning curve will be shortened, as this is a dis-
tilled learning aid. The four method chapters have the same struc-
ture, to speed comprehension and compare-contrast. There’s a
FAQ chapter, a “tips” chapter of common practices, and plenty of
margin pointers to related pages—paper hyperlinks.

Third, you will know motivation and evidence. Some organiza-
tions accept the value of iterative development, but others are still
reluctant. If you need to make a case for an iterative project exper-
iment, you will find in this book the key reasons, research, exam-
ples of large projects, standards-body acceptance, a business case,
and promotion by well-known thought leaders through the

Scrum p. 109
XPp. 137
UPp. 173
Evop. 211

FAQ p. 297
tips p. 247

motivation p. 49
evidence p. 63

1 — Introduction

- decades. The research and history sections are also of value to stu-
dents of software engineering methods.

Note that agile methods are a subset
of iterative methods; this book covers both types.

The chapters may be read in any order; the big picture is this:

1. Introduction, and predict-
able vs. inventive development.

2. Basic iterative and evolu-
tionary method practices.

3. Summary of agile principles
and methods.

4. An agile project story to pull
some ideas together.

5-6. Motivation and evidence
chapters for iterative and agile
methods; useful for some.

7-10. Four method summaries
on Scrum, XP, UP, and Evo.
Note: practices can be mixed.
11. A tips chapter that expands

on some of the method prac-
tices, plus others.

12. A frequently asked ques-
tions (FAQ) chapter.

Finally, people trump process. Every process book should probably

include this standard disclaimer:

Process is only a second-order effect.! The unique people, their
feelings, qualities, and communication are more influential.

Some problems are just hard, some people are just difficult.
These methods are not salvation.

1. A quote from the agile methodologist Alistair Cockburn.

Software Is New Product Development

SOFTWARE IS NEW PRODUCT DEVELOPMENT

Consider building mobile phones on an assembly line: It is possi-
ble to unambiguously define the specifications and construction
steps. After building some phones and measuring things, it is pos-
sible to reliably estimate and schedule the building of future
phones.

A different problem: Build a custom house. The owner wants to
use new environmentally friendly materials and methods, but
isn’t exactly sure what they want, and is going to change or clarify
their decisions as they see the house, costs, and weeks unfold.

At one end of the spectrum, such as manufacturing phones, there
are problems with low degrees of novelty or change, and high rates
of repeated identical or near-identical creation—mass manufac-
turing or predictable manufacturing.

At the other end, there are problems with high degrees of novelty,
creativity, and change, and no previous identical cases from which
to derive estimates or schedules. This is the realm of new product
development or inventive projects.

The development process, management values, planning and esti-
mation models appropriately associated with these two domains
are different (Table 1.1).

Predwtablem eturing L New Pmduct Development

It is possible to first complete | Rarely possible to create up-
specifications, and then build. |front unchanging and detailed
specs.

Table 1.1 predictable vs.
inventive projects

1 — Introduction

X New W-Deve@ment

Near the start, one can reliably

Near the beginning, it is not

estimate effort and cost. possible. As empirical data

emerge, it becomes increasingly
possible to plan and estimate.

It is possible to identify, define,
schedule, and order all the
detailed activities.

Near the beginning, it is not
possible. Adaptive steps driven
by build-feedback cycles are
required.

Adaptation to unpredictable
change is not the norm, and
change-rates are relatively low.

Creative adaptation to unpre-
dictable change is the norm.
Change rates are high.

Of course, the point is,

Most software is not a predictable or mass manufacturing
problem: Software development is new product development.

Plus, many projects use new and buggy technologies that exacer-
bate the degree of novelty and unpredictability. Note also it is a
new product for the inexperienced even if it has been done before.

Since predictable manufacturing is the wrong paradigm for soft-
ware, practices and values rooted in it are not helpful.

This mismatch lies at the heart of many of the challenges asso-
ciated with traditional approaches to running a software
project. '

A “waterfall” lifecycle, big up-front specifications, estimates,
and speculative plans applicable to predictable manufacturing
have been misapplied to software projects, a domain of inven-
tive, high-change, high-novelty work.

