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PREFACE

Fundamentals of Finite Element Analysis is intended to be the text for a senior-level finite element
course in engineering programs. The most appropriate major programs are civil engineering,
engineering mechanics, and mechanical engineering. The finite element method is such a widely used
analysis-and-design technique that it is essential that undergraduate engineering students have a basic
knowledge of the theory and applications of the technique. Toward that objective, I developed and
taught an undergraduate *special topics” course on the finite element method at Washington State
University in the summer of 1992. The course was composed of approximately two-thirds theory and
one-third use of commercial software in solving finite element problems. Since that time, the course
has become a regularly offered technical elective in the mechanical engineering program and is
generally in high demand. During the developmental process for the course, 1 was never satisfied with
any text that was used, and we tried many. I found the available texts to be at one extreme or the
other; namely, essentially no theory and all software application, or all theory and no software
application. The former approach, in my opinion, represents training in using computer programs,
while the latter represents graduate-level study. I have written this text to seek a middle ground.

Pedagogically, I believe that training undergraduate engineering students to use a particular
software package without providing knowledge of the underlying theory is a disservice to the student
and can be dangerous for their future employers. While I am acutely aware that most engineering
programs have a specific finite element software package available for student use, I do not believe
that the text the students use should be tied only to that software. Therefore, I have written this text to
be software-independent. I emphasize the basic theory of the finite element method, in a context that
can be understood by undergraduate engineering students, and leave the software-specific portions to
the instructor.

As the text is intended for an undergraduate course, the prerequisites required are statics,
dynamics , mechanics of materials, and calculus through ordinary differential equations. Of necessity,
partial differential equations are introduced but in a manner that should be understood based on the
stated prerequisites. Applications of the finite element method to heat transfer and fluid mechanics are
included, but the necessary derivations are such that previous coursework in those topics is not
required. Many students will have taken heat transfer and fluid mechanics courses, and the instructor
can expand the topics based on the students’ background.

Chapter 1 is a general introduction to the finite element method and includes a description of the
basic concept of dividing a domain into finite-size subdomains. The finite difference method is
introduced for comparison to the finite element method. A general procedure in the sequence of model
definition, solution, and interpretation of results is discussed and related to the generally accepted
terms of preprocessing, solution, and postprocessing. A brief history of the finite element method is
included, as are a few examples illustrating application of the method.

Chapter 2 introduces the concept of a finite element stiffness matrix and associated displacement
equation, in terms of interpolation functions, using the linear spring as a finite element. The linear
spring is known to most undergraduate students so the mechanics should not be new. However,
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representation of the spring as a finite element is new but provides a simple, concise example of the
finite element method. The premise of spring element formulation is extended to the bar element, and
energy methods are introduced. The first theorem of Castigliano is applied, as is the principle of
minimum potential energy. Castigliano’ s theorem is a simple method to introduce the undergraduate
student to minimum principles without use of variational calculus.

Chapter 3 uses the bar element of Chapter 2 to illustrate assembly of global equilibrium equations
for a structure composed of many finite elements. Transformation from element coordinates to global
coordinates is developed and illustrated with both two- and three-dimensional examples. The direct
stiffness method is utilized and two methods for global matrix assembly are presented. Application of
boundary conditions and solution of the resultant constraint equations is discussed. Use of the basic
displacement solution to obtain element strain and stress is shown as a postprocessing operation. /

Chapter 4 introduces the beam/flexure element as a bridge to continuity requirements for higher-
order elements. Slope continuity is introduced and this requires an adjustment to the assumed
interpolation functions to insure continuity. Nodal load vectors are discussed in the context of discrete
and distributed loads, using the method of work equivalence.

Chapters 2, 3 and 4 introduce the basic procedures of finite-clement modeling in the context of
simple structural elements that should be well-known to the student from the prerequisite mechanics of
materials course. Thus the emphasis in the early part of the course in which the text is used can be on
the finite element method without introduction of new physical concepts. The bar and beam elements
can be used to give the student practical truss and frame problems for solution using available finite
element software. If the instructor is so inclined, the bar and beam elements (in the two-dimensional
context) also provide a relatively simple framework for student development of finite element software
using basic programming languages.

Chapter 5 is the springboard to more advanced concepts of finite element analysis. The method
of weighted residuals is introduced as the fundamental technique used in the remainder of the text. The
Galerkin method is utilized exclusively since 1 have found this method is both understandable for
undergraduate students and is amenable to a wide range of engineering problems. The material in this
chapter repeats the bar and beam developments and extends the finite element concept to one-
dimensional heat transfer. Application to the bar and beam elements illustrates that the method is in
agreement with the basic mechanics approach of Chapters 2-4. Introduction of heat transfer exposes the
student to additional applications of the finite element method that are, most likely, new to the
student.

Chapter 6 is a stand-alone description of the requirements of interpolation functions used in
developing finite element models for any physical problem. Continuity and completeness requirements
are delineated. Natural ( serendipity) coordinates, triangular coordinates, and volume coordinates are
defined and used to develop interpolation functions for several element types in two- and three-
dimensions. The concept of isoparametric mapping is introduced in the context of the plane
quadrilateral element. As a precursor to following chapters, numerical integration using Gaussian
quadrature is covered and several examples included. The use of two-dimensional elements to model
three-dimensional axisymmetric problems is included.

Chapter 7 uses Galerkin’ s finite element method to develop the finite element equations for
several commonly encountered situations in heat transfer. One-, two- and three-dimensional
formulations are discussed for conduction and convection. Radiation is not included, as that
phenomenon introduces a nonlinearity that undergraduate students are not prepared to deal with at the
intended level of the text. Heat transfer with mass transport is included. The finite difference method
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in conjunction with the finite element method is utilized to present methods of solving time-dependent
heat transfer problems.

Chapter 8 introduces finite element applications to fluid mechanics. The general equations
goveming fluid flow are so complex and nonlinear that the topic is introduced via ideal flow. The
stream function and velocity potential function are illustrated and the applicable restrictions noted.
Example problems are included that note the analogy with heat transfer and use heat transfer finite
element solutions to solve ideal flow problems. A brief discussion of viscous flow shows the
nonlinearities that arise when nonideal flows are considered.

Chapter 9 applies the finite element method to problems in solid mechanics with the proviso that
the material response is linearly elastic and small deflection. Both plane stress and plane strain are
defined and the finite element formulations developed for each case. General three-dimensional states
of stress and axisymmetric stress are included. A model for torsion of noncircular sections is developed
using the Prandtl stress function. The purpose of the torsion section is to make the student aware that
all torsionally loaded objects are not circular and the analysis methods must be adjusted to suit
geometry.

Chapter 10 introduces the concept of dynamic motion of structures. It is not presumed that the
student has taken a course in mechanical vibrations; as a result, this chapter includes a primer on basic
vibration theory. Most of this material is drawn from my previously published text Applied Mechanical
Vibrations. The concept of the mass or inertia matrix is developed by examples of simple spring-mass
systems and then extended to continuous bodies. Both lumped and consistent mass matrices are defined
and used in examples. Modal analysis is the basic method espoused for dynamic response; hence, a
considerable amount of text material is devoted to determination of natural modes, orthogonality, and
modal superposition. Combination of finite difference and finite element methods for solving transient
dynamic structural problems is included.

The appendices are included in order to provide the student with material that might be new or
may be “rusty” in the student’ s mind.

Appendix A is a review of matrix algebra and should be known to the student from a course in
linear algebra.

Appendix B states the general three-dimensional constitutive relations for a homogeneous,
isotropic, elastic material. I have found over the years that undergraduate engineering students do not
have a firm grasp of these relations. In general, the student has been exposed to so many special cases
that the three-dimensional equations are not truly understood.

Appendix C covers three methods for solving linear algebraic equations. Some students may use
this material as an outline for programming solution methods. I include the appendix only so the reader
is aware of the algorithms underlying the software he/she will use in solving finite element problems.

Appendix D describes the basic computational capabilities of the FEPC software. The FEPC
( FEPfinite element program for the PCpersonal computer) was developed by the late Dr. Charles
Knight of Virginia Polytechnic Institute and State University and is used in conjunction with this text
with permission of his estate. Dr. Knight’ s programs allow analysis of two-dimensional programs
using bar, beam, and plane stress elements. The appendix describes in general terms the capabilities
and limitations of the software. The FEPC program is available to the student at www. mhhe. com/
hutton.

Appendix E includes problems for several chapters of the text that should be solved via
commercial finite element software. Whether the instructor has available ANSYS, ALGOR,
COSMOS, etc. , these problems are oriented to systems having many degrees of freedom and not
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amenable to hand calculation. Additional problems of this sort will be added to the website on a
continuing basis.

The textbook features a Web site ( www. mhhe. com/hutton) with finite element analysis links
and the FEPC program. At this site, instructors will have access to PowerPoint images and an
Instructors’ Solutions Manual. Instructors can access these tools by contacting their local McGraw-Hill
sales representative for password information.

I thank Raghu Agarwal, Rong Y. Chen, Nels Madsen, Robert L. Rankin, Joseph J. Rencis,
Stephen R. Swanson, and Lonny L. Thompson, who reviewed some or all of the manuscript and
provided constructive suggestions and criticisms that have helped improve the book.

I am grateful to all the staff at McGraw-Hill who have labored to make this project a reality. I
especially acknowledge the patient encouragement and professionalism of Jonathan Plant, Senior
Editor, Lisa Kalner Williams, Developmental Editor, and Kay Brimeyer, Senior Project Manager.

David V. Hutton
Pullman, WA
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CHAPTER 1

Basic Concepts of the
Finite Element Method

1.1 INTRODUCTION

The finite element method ( FEM), sometimes referred to as finite element analysis (FEA), is a
computational technique used to obtain approximate solutions of boundary value problems in
engineering. Simply stated, a boundary value problem is a mathematical problem in which one or
more dependent variables must satisfy a differential equation everywhere within a known domain of
independent variables and satisfy specific conditions on the boundary of the domain. Boundary value
problems are also sometimes called field problems. The field is the domain of interest and most often
represents a physical structure. The field variables are the dependent variables of interest governed by
the differential equation. The boundary conditions are the specified values of the field variables ( or
related variables such as derivatives) on the boundaries of the field. Depending on the type of physical
problem being analyzed, the field variables may include physical displacement, temperature, heat
flux, and fluid velocity to name only a few.

1.2 HOW DOES THE FINITE ELEMENT METHOD WORK?

The general techniques and terminology of finite element analysis will be introduced with reference to
Figure 1. 1. The figure depicts a volume of some material or materials having known physical
properties. The volume represents the domain of a boundary value problem to be solved. For
simplicity , at this point, we assume a two-dimensional case with a single field variable d(x, y) to be
determined at every point P(x, y) such that a known governing equation (or equations) is satisfied
exactly at every such point. Note that this implies an exact mathematical solution is obtained; that is,
the solution is a closed-form algebraic expression of the independent variables. In practical problems,
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the domain may be geometrically complex as is, often, the governing equation and the likelihood of
obtaining an exact closed-form solution is very low. Therefore, approximate solutions based on
numerical techniques and digital computation are most often obtained in engineering analyses of
complex problems. Finite element analysis is a powerful technique for obtaining such approximate
solutions with good accuracy.

()

Figure 1. 1

(a) A general two-dimensional domain of field variable ¢(x, y).

(b) A three-node finite element defined in the domain.

(¢) Additional elements showing a partial finite element mesh of the domain.

A small triangular element that encloses a finite-sized subdomain of the area of interest is shown
in Figure 1. 1b. That this element is not a differential element of size dx x dy makes this a finite
element. As we treat this example as a two-dimensional problem, it is assumed that the thickness in
the z direction is constant and z dependency is not indicated in the differential equation. The vertices of
the triangular element are numbered to indicate that these points are nodes. A node is a specific point
in the finite element at which the value of the field variable is to be explicitly calculated. Exterior
nodes are located on the boundaries of the finite element and may be used to connect an element to
adjacent finite elements. Nodes that do not lie on element boundaries are interior nodes and cannot be
connected to any other element. The triangular element of Figure 1. 1b has only exterior nodes.

If the values of the field variable are computed only at nodes, how are values obtained at other
points within a finite element? The answer contains the crux of the finite element method: The values
of the field variable computed at the nodes are used to approximate the values at nonnodal points ( that
is, in the element interior) by interpolation of the nodal values. For the three-node triangle example,
the nodes are all exterior and, at any other point within the element, the field variable is described by

the approximate relation
d(x,y) =N, (x,y) b, +Ny(x,y) b, +N(x,y) s (L.1)
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where ¢, ,¢,, and ¢, are the values of the field variable at the nodes, and N,, N,, and N, are the
interpolation functions, also known as shape functions or blending functions. In the finite element
approach, the nodal values of the field variable are treated as unknown constants that are to be
determined. The interpolation functions are most often polynomial forms of the independent variables,
derived to satisfy certain required conditions at the nodes. These conditions are discussed in detail in
subsequent chapters. The major point to be made here is that the interpolation functions are
predetermined, known functions of the independent variables; and these functions describe the
variation of the field variable within the finite element.

The triangular element described by Equation 1.1 is said to have 3 degrees of freedom, as three
nodal values of the field variable are required to describe the field variable everywhere in the element.
This would be the case if the field variable represents a scalar field, such as temperature in a heat
transfer problem. If the domain of Figure 1.1 represents a thin, solid body subjected to plane stress
(Chapter 7), the field variable becomes the displacement vector and the values of two components
must be computed at each node. In the latter case, the three-node triangular element has 6 degrees of
freedom. In general, the number of degrees of freedom associated with a finite element is equal to the
product of the number of nodes and the number of values of the field variable (and possibly its
derivatives) that must be computed at each node.

How does this element-based approach work over the entire domain of interest? As depicted in
Figure 1. 1c, every element is connected ar its exterior nodes to other elements. The finite element
equations are formulated such that, at the nodal connections, the value of the field variable at any
connection is the same for each element connected to the node. Thus, continuity of the field variable
at the nodes is ensured. In fact, finite element formulations are such that continuity of the field
variable across interelement boundaries is also ensured. This feature avoids the physically unacceptable
possibility of gaps or voids occurring in the domain. In structural problems, such gaps would represent
physical separation of the material. In heat transfer, a “gap” would manifest itself in the form of
different temperatures at the same physical point.

Although continuity of the field variable from element to element is inherent to the finite element
formulation , interelement continuity of gradients (i.e., derivatives) of the field variable does not
generally exist. This is a critical observation. In most cases, such derivatives are of more interest than
are field variable values. For example, in structural problems, the field variable is displacement but
the true interest is more often in strain and stress. As strain is defined in terms of first derivatives of
displacement components, strain is not continuous across element boundaries. However, the
magnitudes of discontinuities of derivatives can be used to assess solution accuracy and convergence as
the number of elements is increased, as is illustrated by the following example.

1.2.1 Comparison of Finite Element and Exact Solutions

The process of representing a physical domain with finite elements is referred to as meshing, and the
resulting set of elements is known as the finite element mesh. As most of the commonly used element
geometries have straight sides, it is generally impossible to include the entire physical domain in the
element mesh if the domain includes curved boundaries. Such a situation is shown in Figure 1. 2a,
where a curved-boundary domain is meshed ( quite coarsely) using square elements. A refined mesh
for the same domain is shown in Figure 1.2b, using smaller, more numerous elements of the same
type. Note that the refined mesh includes significantly more of the physical domain in the finite
element representation and the curved boundaries are more closely approximated. ( Triangular elements
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could approximate the boundaries even better. )

(a) (b)

Figure 1.2

(a) Arbitrary curved-boundary domain modeled using square elements. Stippled areas
are not included in the model. A total of 41 elements is shown.

(b) Refined finite element mesh showing reduction of the area not included in the
model. A total of 192 elements is shown.

If the interpolation functions satisfy certain mathematical requirements ( Chapter 6 ), a finite
element solution for a particular problem converges to the exact solution of the problem. That is, as
the number of elements is increased and the physical dimensions of the elements are decreased, the
finite element solution changes incrementally. The incremental changes decrease with the mesh
refinement process and approach the exact solution asymptotically. To illustrate convergence, we
consider a relatively simple problem that has a known solution. Figure 1.3a depicts a tapered, solid
cylinder fixed at one end and subjected to a tensile load at the other end. Assuming the displacement at
the point of load application to be of interest, a first approximation is obtained by considering the
cylinder to be uniform, having a cross-sectional area equal to the average area of the cylinder (Figure
1.3b). The uniform bar is a link or bar finite element (Chapter 2) , so our first approximation is a
one-element, finite element model. The solution is obtained using the strength of materials theory.
Next, we model the tapered cylinder as two uniform bars in series, as in Figure 1. 3c. In the two-
element model, each element is of length equal to half the total length of the cylinder and has a cross-
sectional area equal to the average area of the corresponding half-length of the cylinder. The mesh
refinement is continued using a four-element model, as in Figure 1.3d, and so on. For this simple
problem, the displacement of the end of the cylinder for each of the finite element models is as shown
in Figure 1. 4a, where the dashed line represents the known solution. Convergence of the finite
element solutions to the exact solution is clearly indicated. On the other hand, if we plot displacement
as a function of position along the length of the cylinder, we can observe convergence as well as the
approximate nature of the finite element solutions. Figure 1.4b depicts the exact strength of materials
solution and the displacement solution for the four-element models. We note that the displacement
variation in each element is a linear approximation to the true nonlinear solution. The linear variation
is directly attributable to the fact that the interpolation functions for a bar element are linear. Second,
we note that, as the mesh is refined, the displacement solution converges to the nonlinear solution at
every point in the solution domain.

The previous paragraph discussed convergence of the displacement of the tapered cylinder. As
will be seen in Chapter 2, displacement is the primary field variable in structural problems. In most
structural problems, however, we are interested primarily in stresses induced by specified loadings.
The stresses must be computed via the appropriate stress-strain relations, and the strain components are
derived from the displacement field solution. Hence, strains and stresses are referred to as derived



