INTRODUCTION TO

rogrammmg

|nJava

An Interdisciplinary Approach

Robert Sedgewick « Kevin Wayne

Introduction
to
Programming in Java

An Interdisciplinary Approach

SEcoND EDITION

Robert Sedgewick
Kevin Wayne

Princeton University

vvAddison-Wesley

Boston * Columbus * Indianapolis * New York * San Francisco * Amsterdam * Cape Town
Dubai * London * Madrid « Milan « Munich ¢ Paris «+ Montreal * Toronto * Delhi * Mexico City
Sao Paulo * Sydney * Hong Kong * Seoul « Singapore * Taipei « Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned. com.

For questions about sales outside the United States, please contact intlcs@pearson. com.

Visit us on the Web: informit. com/aw

Library of Congress Control Number: 2017934241

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms, and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department, please

visit www. pearsoned.com/permissions/.

ISBN-13: 978-0-672-33784-0
ISBN-10: 0-672-33784-3

2 17

Introduction
to
Programming in Java

SECOND EDITION

To Adam, Andrew, Brett, Robbie,
Henry, lona, Peter, Rose,

and especially Linda

To Jackie, Alex, and Michael

HE BASIS FOR EDUCATION IN THE last millennium was “reading, writing, and arith-

metic”; now it is reading, writing, and computing. Learning to program is an
essential part of the education of every student in the sciences and engineering.
Beyond direct applications, it is the first step in understanding the nature of com-
puter science’s undeniable impact on the modern world. This book aims to teach
programming to those who need or want to learn it, in a scientific context.

Our primary goal is to empower students by supplying the experience and
basic tools necessary to use computation effectively. Our approach is to teach stu-
dents that composing a program is a natural, satisfying, and creative experience.
We progressively introduce essential concepts, embrace classic applications from
applied mathematics and the sciences to illustrate the concepts, and provide op-
portunities for students to write programs to solve engaging problems.

We use the Java programming language for all of the programs in this book—
we refer to “Java” after “programming in the title to emphasize the idea that the
book is about fundamental concepts in programming, not Java per se. This book
teaches basic skills for computational problem solving that are applicable in many
modern computing environments, and is a self-contained treatment intended for
people with no previous experience in programming.

This book is an interdisciplinary approach to the traditional CS1 curriculum,
in that we highlight the role of computing in other disciplines, from materials sci-
ence to genomics to astrophysics to network systems. This approach emphasizes
for students the essential idea that mathematics, science, engineering, and com-
puting are intertwined in the modern world. While it is a CS1 textbook designed
for any first-year college student, the book also can be used for self-study or as a
supplement in a course that integrates programming with another field.

xi

Coverage The book is organized around four stages of learning to program: ba-
sic elements, functions, object-oriented programming, and algorithms (with data
structures). We provide the basic information readers need to build confidence in
their ability to compose programs at each level before moving to the next level. An
essential feature of our approach is the use of example programs that solve intrigu-
ing problems, supported with exercises ranging from self-study drills to challeng-
ing problems that call for creative solutions.

Basic elements include variables, assignment statements, built-in types of data,
flow of control, arrays, and input/output, including graphics and sound.

Functions and modules are the student’s first exposure to modular program-
ming. We build upon familiarity with mathematical functions to introduce Java
functions, and then consider the implications of programming with functions, in-
cluding libraries of functions and recursion. We stress the fundamental idea of
dividing a program into components that can be independently debugged, main-
tained, and reused.

Object-oriented programming is our introduction to data abstraction. We em-
phasize the concepts of a data type and their implementation using Java’s class
mechanism. We teach students how to use, create, and design data types. Modu-
larity, encapsulation, and other modern programming paradigms are the central
concepts of this stage.

Algorithms and data structures combine these modern programming para-
digms with classic methods of organizing and processing data that remain effective
for modern applications. We provide an introduction to classical algorithms for
sorting and searching as well as fundamental data structures and their application,
emphasizing the use of the scientific method to understand performance charac-
teristics of implementations.

Applications in science and engineering are a key feature of the text. We moti-
vate each programming concept that we address by examining its impact on spe-
cific applications. We draw examples from applied mathematics, the physical and
biological sciences, and computer science itself, and include simulation of physical
systems, numerical methods, data visualization, sound synthesis, image process-
ing, financial simulation, and information technology. Specific examples include a
treatment in the first chapter of Markov chains for web page ranks and case stud-
ies that address the percolation problem, n-body simulation, and the small-world
phenomenon. These applications are an integral part of the text. They engage stu-
dents in the material, illustrate the importance of the programming concepts, and
provide persuasive evidence of the critical role played by computation in modern
science and engineering.

Our primary goal is to teach the specific mechanisms and skills that are need-
ed to develop effective solutions to any programming problem. We work with com-
plete Java programs and encourage readers to use them. We focus on programming
by individuals, not programming in the large.

Related texts This book is the second edition of our 2008 text that incorporates
hundreds of improvements discovered during another decade of teaching the ma-
terial, including, for example, a new treatment of hashing algorithms.

The four chapters in this book are identical to the first four chapters of our
text Computer Science: An Interdisciplinary Approach. That book is a full introduc-
tory course on computer science that contains additional chapters on the theory of
computing, machine-language programming, and machine architecture. We have
published this book separately to meet the needs of people who are interested only
in the Java programming content. We also have published a version of this book
that is based on Python programming.

The chapters in this volume are suitable preparation for our book Algorithms,
Fourth Edition, which is a thorough treatment of the most important algorithms
in use today.

Use in the curriculum This book is suitable for a first-year college course
aimed at teaching novices to program in the context of scientific applications.
Taught from this book, any college student will learn to program in a familiar con-
text. Students completing a course based on this book will be well prepared to ap-
ply their skills in later courses in their chosen major and to recognize when further
education in computer science might be beneficial.

Instructors interested in a full-year course (or a fast-paced one-semester
course with broader coverage) should instead consider adopting Computer Science:
An Interdisciplinary Approach.

Prospective computer science majors, in particular, can benefit from learning
to program in the context of scientific applications. A computer scientist needs the
same basic background in the scientific method and the same exposure to the role
of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to
teach prospective computer science majors and prospective majors in other fields
in the same course. We cover the material prescribed by CS1, but our focus on ap-
plications brings life to the concepts and motivates students to learn them. Our
interdisciplinary approach exposes students to problems in many different disci-
plines, helping them to choose a major more wisely.

Xiv

Whatever the specific mechanism, the use of this book is best positioned early
in the curriculum. This positioning allows us to leverage familiar material in high
school mathematics and science. Moreover, students who learn to program early in
their college curriculum will then be able to use computers more effectively when
moving on to courses in their specialty. Like reading and writing, programming
is certain to be an essential skill for any scientist or engineer. Students who have
grasped the concepts in this book will continually develop that skill through a life-
time, reaping the benefits of exploiting computation to solve or to better under-
stand the problems and projects that arise in their chosen field.

Prerequisites This book is suitable for typical first-year college students. In
other words, we do not expect preparation beyond what is typically required for
other entry-level science and mathematics courses.

Mathematical maturity is important. While we do not dwell on mathematical
material, we do refer to the mathematics curriculum that students have taken in
high school, including algebra, geometry, and trigonometry. Most students in our
target audience automatically meet these requirements. Indeed, we take advantage
of familiarity with this curriculum to introduce basic programming concepts.

Scientific curiosity is also an essential ingredient. Science and engineering stu-
dents bring with them a sense of fascination with the ability of scientific inquiry to
help explain what occurs in nature. We leverage this predilection with examples of
simple programs that speak volumes about the natural world. We do not assume
any specific knowledge beyond that provided by typical high school courses in
mathematics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching
programming is our primary goal, so we assume no prior programming experi-
ence. Nevertheless, composing a program to solve a new problem is a challenging
intellectual task, so students who have written numerous programs in high school
can benefit from taking an introductory programming course based on this book.
The book can support teaching students with varying backgrounds because the ap-
plications appeal to both novices and experts alike.

Experience using a computer is not necessary, but also is not at all a problem.
College students use computers regularly—to communicate with friends and rela-
tives, to listen to music, to process photos, and as part of many other activities. The
realization that they can harness the power of their own computer in interesting
and important ways is an exciting and lasting lesson.

Goals We cover the CS1 curriculum, but anyone who has taught an introduc-
tory programming course knows that expectations of instructors in later cours-
es are typically high: Each instructor expects all students to be familiar with the
computing environment and approach that he or she wants to use. For example, a
physics professor might expect students to design a program over the weekend to
run a simulation; a biology professor might expect students to be able to analyze
genomes; or a computer science professor might expect knowledge of the details
of a particular programming environment. Is it realistic to meet such diverse ex-
pectations? s it realistic to offer a single introductory CS course for all students, as
opposed to a different introductory course for each set of students?

With this book, and decades of experience at Princeton and other institutions
that have adopted earlier versions, we answer these questions with a resounding
yes. The most important reason to do so is that this approach encourages diversity.
By keeping interesting applications at the forefront, we can keep advanced students
engaged, and by avoiding classifying students at the beginning, we can ensure that
every student who successfully masters this material is prepared for further study.

What can teachers of upper-level college courses expect of students who have
completed a course based on this book?

This is a common introductory treatment of programming, which is analo-
gous to commonly accepted introductory courses in mathematics, physics, biology,
economics, or chemistry. An Introduction to Programming in Java strives to pro-
vide the basic preparation needed by all college students, while sending the clear
message that there is much more to understand about computer science than just
programming. Instructors teaching students who have studied from this book can
expect that they will have the knowledge and experience necessary to enable them
to effectively exploit computers in diverse applications.

What can students who have completed a course based on this book expect to
accomplish in later courses?

Our message is that programming is not difficult to learn and that harness-
ing the power of the computer is rewarding. Students who master the material in
this book are prepared to address computational challenges wherever they might
appear later in their careers. They learn that modern programming environments,
such as the one provided by Java, help open the door to any computational prob-
lem they might encounter later, and they gain the confidence to learn, evaluate, and
use other computational tools. Students interested in computer science will be well
prepared to pursue that interest; students in other fields will be ready to integrate
computation into their studies.

XV

Online lectures A complete set of studio-produced videos that can be used in
conjunction with this text is available at

http://www.informit.com/title/9780134493831

As with traditional live lectures, the purpose is to inform and inspire, motivating
students to study and learn from the text. Our experience is that student engage-
ment with such online material is significantly better than with live lectures be-
cause of the ability to play the lectures at a chosen speed and to replay and review
the lectures at any time.

Booksite An extensive body of other information that supplements this text
may be found on the web at

http://introcs.cs.princeton.edu/java

For economy, we refer to this site as the booksite throughout. It contains material
for instructors, students, and casual readers of the book. We briefly describe this
material here, though, as all web users know, it is best surveyed by browsing. With
a few exceptions to support testing, the material is all publicly available.

The booksite contains a condensed version of the text narrative for reference
while online, hundreds of exercises and programming problems (some with solu-
tions), hundreds of easily downloadable Java programs, real-world data sets, and
our I/O libraries for processing text, graphics, and sound. It is the web presence
associated with the book and is a living document that is accessed millions of times
per year. It is an essential resource for everyone who owns this book and is critical
to our goal of making computer science an integral component of the education
of all college students.

One of the most important implications of the booksite is that it empowers
teachers and students to use their own computers to teach and learn the material.
Anyone with a computer and a browser can begin learning to program by following
a few instructions on the booksite. The process is no more difficult than download-
ing a media player or a song.

For teachers, the booksite contains resources for teaching that (together with
the book and the studio-produced videos) are sufficiently flexible to support many
of the models for teaching that are emerging as teachers embrace technology in the
21st century. For example, at Princeton, our teaching style was for many years based
on offering two lectures per week to a large audience, supplemented by two class
sessions per week where students meet in small groups with instructors or teaching

assistants. More recently, we have moved to a model where students watch lectures
online and we hold class meetings once a week in addition to the two class sessions.
Other teachers may work completely online. Still others may use a “flipped” model
involving enrichment of the lectures after students watch them.

For students, the booksite contains quick access to much of the material in the
book, including source code, plus extra material to encourage self-learning. Solu-
tions are provided for many of the book’s exercises, including complete program
code and test data. There is a wealth of information associated with programming
assignments, including suggested approaches, checklists, FAQs, and test data.

For casual readers, the booksite is a resource for accessing all manner of extra
information associated with the book’s content. All of the booksite content pro-
vides web links and other routes to pursue more information about the topic under
consideration. There is far more information accessible than any individual could
fully digest, but our goal is to provide enough to whet any reader’s appetite for
more information about the book’s content.

Acknowledgments This project has been under development since 1992, so
far too many people have contributed to its success for us to acknowledge them all
here. Special thanks are due to Anne Rogers, for helping to start the ball rolling; to
Dave Hanson, Andrew Appel, and Chris van Wyk, for their patience in explaining
data abstraction; and to Lisa Worthington and Donna Gabai, for being the first to
truly relish the challenge of teaching this material to first-year students. We also
gratefully acknowledge the efforts of /dev/126 ; the faculty, graduate students, and
teaching staff who have dedicated themselves to teaching this material over the past
25 years here at Princeton University; and the thousands of undergraduates who
have dedicated themselves to learning it.

Robert Sedgewick

Kevin Wayne

February 2017

xvii

Also from Addison-Wesley &,

informit.com/sedgewick

The definitive guide to algorithms
i - Essential information about algorithms
iii ||| ii B!l!ll and data structures
- A classic text, thoroughly updated
- Real-world examples throughout
- An indispensable body of knowledge for
solving large problems by computer

Algor.l.,.t.bm.§

992 pages + 972 exercises
152 programs - 350 figures
ISBN-13:978-0-321-57351-3

Algorithms

Fourth Edition

Robert Sedgewick & Kevin Wayne
Princeton University

Also available: Companion video lectures
+ Studio-produced
» Fully coordinated with textbook content
+ ldeal for flipped classrooms and online learning

ROBERT SEDGEWICK | KEVIN WAYNE

24 lectures + 24+ hours
ISBN-13: 978-0-13-438443-6

Pearson

REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

* Download available product updates.

* Access bonus material when applicable.

* Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

* Get a coupon for 35% fomweurnextourchase. valid for 30 days. Your code will
be available in your InforrhlT-cart: (You will &lso find it in the Manage Codes

section of your account page.)

Registration benefits vary by product. Benetits wallizbe listed on your account page
under Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world's foremost
education company. At InformlT.com you can

* Shop our books, eBooks, software, and video training.

* Take advantage of our special offers and promotions (informit.com/promotions).

* Sign up for special offers and content newsletters (informit.com/newsletters).

* Read free articles and blogs by information technology experts

¢« Access thousands of free chapters and video lessons.

Connect with InformIT—Visit informit.com/community
Learn about InformIT community events and programs.

nogopoR
informir.com

the trusted technology learning source

n-Wesley « Press « IBM Pres » Prentice Hall < Que -« Sams - VMware Pres

ALWAYS LEARNING PEARSON

Programs .

Preface

| —Elements of Programming

1.1
1.2
1.3
1.4
1.5
1.6

Your First Program

Built-in Types of Data
Conditionals and Loops

Arrays

Input and Output

Case Study: Random Web Surfer

2—Functions and Modules

2.1
2.2
2.3
2.4

Defining Functions
Libraries and Clients
Recursion

Case Study: Percolation

3—Object-Oriented Programming

il
32
3.3
3.4

Using Data Types

Creating Data Types

Designing Data Types

Case Study: N-Body Simulation

4—Algorithms and Data Structures .

4.1
4.2
4.3
4.4
4.5
Context
Glossary
Index
APIs .

Performance

Sorting and Searching

Stacks and Queues

Symbol Tables

Case Study: Small-World Phenomenon

14
50
90
126
170

226
262
300

382
428
478

532
566
624
670

. Viii

Xi

« & & 1891
192

- 1
330

: » o« 493
494

715
721
429
751

vii

viii

Elements of Programming

Your First Program

111
1.1.2

HellooWorld. 4
Using a command-line argument 7

Built-in Types of Data

1K
1.2.2
1.2.3
1.2.4
1.2.5

String concatenation20
Integer multiplication and division 23
Quadratic formula25
Leap year . .28

Casting to get a random integer . . 34

Conditionals and Loops

1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
Arrays
1.4.1
1.4.2
1.4.3
1.4.4

Flipping a faircoin53
Your first while loop. 55
Computing powersof 2 57
Your first nested loops 63
Harmonic numbers 65
Newton’s method.66
Converting to binary68
Gambler’s ruin simulation71
Factoring integers. 73

Sampling without replacement . .98

Coupon collector simulation . . 102
Sieve of Eratosthenes 104
Self-avoiding random walks . . 113

Input and Output

1.5.1
1.5.2
1.5.3
1.5.4
1.5:5
1.5.6
1.5.7

Generating a random sequence 128

Interactive user input 136
Averaging a stream of numbers 138
Asimple filter 140
Standard input-to-drawing filter 147
Bouncingball 153
Digital signal processing 158

Case Study: Random Web Surfer

1.6.1
1.6.2
1:6:3

Computing the transition matrix 173
Simulating a random surfer . . 175
Mixing a Markov chain 182

Functions and Modules

Defining Functions

2.1.1 Harmonic numbers (revisited)
2.1.2 Gaussian functions
2.1.3 Coupon collector (revisited) . .
2.1.4 Play that tune (revisited) .

Libraries and Clients -

2.2.1 Random number library. . .
222 Arrayl/Olibrary
2.2.3 Tterated function systems. .
2.2.4 Data analysis library.
2.2.5 Plotting data values in an array

2.2.6 Bernoulli trials . .

Recursion

2.3.1 Euclid’s algorithm. .
2.3.2 Towers of Hanoi .
233 Graycode
2.3.4 Recursive graphics
23,5 Brownianbridge

2.3.6 Longest common subsequence

Case Study: Percolation

2.4.1 Percolation scaffolding. .

2.4.2 Vertical percolation detection. .
2.4.3 Visualization client
2.4.4 Percolation probability estimate
2.4.5 Percolation detection

2.4.6 Adaptive plot client .

194
203
206

. 213

. 234

238

. 241

245
247
250

. 267
. 270

275

. 277

279
287

