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Preface by Eugenio Onate

Numerical methods have become nowadays indispensable tools for the quantitative solution of
the differential equations that express the behaviour of any system in the universe. Examples
are found in the study of engineering systems such as mechanical devices, structures and
vehicles, and of biological and medical systems such as human organs, prosthesis and cells,
to name a few. Numerical methods are applicable to the solution of differential equations that
represent mathematical models of an underlying real system. These models are conceptual
representation of reality using mathematics. It is interesting that in mechanics (which governs
the behaviour of all engineering systems and many problems in physics) these models
are obtained by simple balance (or equilibrium) laws applied to infinitesimal parts of the
continuous system and its boundary. The beauty of the modelling process is that many
times the resulting differential equations, even if they have the same mathematical form, are
applicable to many different real life problems. A typical example is the Poisson equation that
is used to represent the behaviour of such different problems as the heat conduction in a body,
the seepage flow in a porous media, the flow of an incompressible fluid and the torsion of a
bar, among others. Clearly a mathematical model represents a simplification of reality using
geometrical data and physical properties of the constituent materials that are close enough
to those of the real system under study and at the same time help to express its behaviour
in mathematical form. On the other hand, the numerical solution of the resulting governing
differential equations of the mathematical model introduces a series of simplifications.
Numerical methods work on discretized forms of the model geometry which is split into
simple geometrical entities, such as triangles and tetrahedra in two (2D) or three (3D) dimen-
sions, respectively, as is typical in finite element or finite volume procedures or Cartesian
grids, as is done in finite difference methods. The balance equations for each discretization
unit (an element, a volume or a cell) are obtained in terms of a finite set of parameters
and then used to obtain (assemble) the behaviour of the whole system by expressing the
satisfaction of the balance laws at all the discrete points of the discrete system. The so-called
discretization process leads to a system of algebraic equations that typically involve several
millions of unknown parameters for real life problems. These equations are solved in modern
computers using state of the art of computer science technology. This explains why numerical
methods are many times referred to as computational methods. The two terms are in fact
equivalent. The simplifications made along the modelling and numerical solution path lead to
a final quantitative solution that is only approximate. The quantification of the modelling and
numerical solution errors are topics of much current research. The timely book of Professor
Ruas fits precisely in the context described above as it provides a comprehensive insight on the
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derivation and best use of numerical methods for solving a number of differential equations
that govern a wide class of practical problems. The emphasis is in providing the reader with
the knowledge and tools to assess the performance and reliability of a particular numerical
method via the study of its stability, consistency, convergence and approximation order. The
book uses simple one-dimensional (1D) problems for introducing the three basic numerical
methods addressed in the book: finite differences, finite elements and finite volumes. A
quantitative reliability analysis of the three families of methods is presented as well as the
extension of the methods to transient situations and 2D problems. A convergence analysis for
a well know multidimensional scalar problem (the Poisson equation) is also included. The
book devotes a chapter to presenting higher order Lagrange finite elements and the extension
of the finite element method to 3D problems. A final chapter describes a number of interesting
topics such as the numerical solution of bi-harmonic equations in rectangles, the solution
of the advection- diffusion equation, an outline of a posteriori error estimation and adaptive
numerical solution procedures and a brief introduction to the numerical solution of nonlinear
partial differential equations. Other numerical techniques are briefly presented in the
Appendix.

I consider the book of Professor Ruas a valuable contribution to the extensive literature
on numerical methods for partial differential equations. The book addresses modern and
practical issues that are of paramount importance for the use of numerical methods with
enough confidence. It is written in a clear form with many examples that help to understand
the different concepts. I believe that it will be very useful to students in mathematics, physics,
engineering and general sciences, as well as to the practitioners of numerical methods.

Barcelona, October 12, 2015

Eugenio Onate

Professor of Continuum and Structural Mechanics

Technical University of Catalunya, Barcelona, Spain

Director of International Center for Numerical Methods in Engineering (CIMNE)



Preface by Larisa Beilina

This book presents the basics of the mathematical theory for three main numerical methods
applied to the solution of Partial Differential Equations: the Finite Element Method (FEM).
the Finite Difference Method (FDM) and the Finite Volume Method (FVM).

Author’s proposal contains a lot of new material, such us several optimal results. which
have not been considered before. An outstanding advantage of Professor Ruas™ book is
the fact that the basic FEM, FDM and FVM, are studied in a simple and popular fashion,
although their reliability is addressed with all rigor by exploiting the concepts of method’s
stability, consistency and convergence. Main attention is given to low order methods as the
most employed ones in real-life applications.

The first two chapters in the book describe the three discretization methods and present in
a simplified framework the mathematical analysis applied to the one-dimensional boundary
value problem in space. The next chapter considers discretization methods for time-dependent
boundary value problems, as well as corresponding stability, consistency and convergence
results. Then further chapters of the book gradually take the reader to the discretization and
analysis of spatial and time-dependent PDEs in higher dimensions. More precisely, in a very
easy form the FEM with piecewise-linear functions as well as the Vertex and Cell-centred FVM
are explained. and convergence and reliability analysis of these methods are presented. Several
important extensions of the FEM with Lagrange elements of degree greater than or equal to
one applied to the solution of elliptic PDE in two and three dimensions are consistently shown.
Finally, some basic numerical methods for the solution of non-linear PDEs are also described.

Several numerical examples appended to every chapter, run with codes written in MATLAB
or in FORTRAN 95, illustrate approximation properties of numerical methods. At the end
of every chapter a number of useful exercises are proposed in order to help the reader to
consolidate understanding of the material presented therein, for a number of applied problems.

This book is undoubtedly of great interest for undergraduate and graduate students in
computational and applied mathematics, as well as for researchers and engineers working in
the field of numerical methods for PDEs.

Gothenburg, October 30, 2015

L. Beilina, PhD

Department of Mathematical Sciences

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden
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Introduction

In the realm of spirit, seek
clarity; in the material world,
seek utility.

Gottfried Wilhelm Leibniz

Since Leonhard Euler, numerical methods gradually became the currently widespread
techniques to solve real-life problems governed by differential equations. It was, however,
the invention of modern computers in the middle of the 20th century that significantly pushed
this branch of applied science to play such a prominent role in contemporary technological
development. Supercomputers among other high-performance machines became available
since the 1980s, and this has favoured an even more spectacular evolution of numerical
methods for differential equations, as tools capable of producing exploitable responses out of
mathematical models of the kind.

In case a system of differential equations is expressed in terms of more than one
independent variable, a system member is referred to as a partial differential equation (i.c.
a PDE) and otherwise as an ordinary differential equation, (i.e. an ODE). About 100 years
ago, numerical methods became practitioners’ preferred alternative to solve PDEs, whose
analytical solution is out of reach. This book is intended for presentation, to specialists acting
in various technological and scientific fields, of basic elements on numerical methods to solve
PDEs. Although the equations can be posed in any kind of spatial domain, here we confine
ourselves to the case of boundary value problems, supplemented with initial conditions in
case they are also time-dependent. This implies assuming that an equation’s definition domain
is bounded. Moreover, except for a few cases, the presentation is restricted to equations in
terms of real independent variables, whose solution range is a subset of the real line.

It is well-known that PDEs model the behaviour of relevant unknown quantities in a large
amount of situations of practical interest. These cover domains as diverse as engineering,
physics, geo- and biomedical sciences, chemistry and economics, among many others, For
example, in aircraft design the knowledge of the way air flows about fuselages is of paramount
importance, as much as mastering the propagation of acoustic waves in vehicle interiors is a
must in modern automobile design. Also in recent decades, more and more such models are
being employed in the search for better understanding of human body systems. This is surely
helping to prevent highly lethal diseases such as cardiovascular ones.

Of course, whenever possible, analytical methods should be employed to solve certain
types of PDEs. Among these, the method of separation of variables is an outstanding
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example. However, for different reasons, including model complexity, irregular geometries
or inaccurate field data, it is no point trying to determine exact analytical solutions to PDEs
in most cases. Instead, numerical methods, naturally designed for use in a computational
environment, provide a valid alternative to mathematical expressions representing solutions
to the theoretical model. These can be as diverse as fluid velocity, blood pressure, electro-
magnetic fields, structural stresses, species fractions in biological evolution or chemical
reactions, among many others having their behavior modelled by a PDE. That is why
running a computer code, in which a numerical solution procedure is implemented, is called
a numerical simulation. Indeed, the thus generated numerical values replace, in a way, a
physical response to input data characterising a specific application.

Aim
The purpose of this book is to study numerical methods for solving PDEs, designed to possibly
generate accurate substitutes of unknown fields, in terms of which the equations are expressed.
Generally speaking, instead of values provided by a solution’s analytical expression at every
point of the physical domain in which a given phenomenon or process is being modelled by
a PDE, in the numerical approach only solution’s approximate values or related quantities
at a finite number of points are determined. Owing to this feature, the underlying numerical
method is also known as a discretisation method. Otherwise stated, the term discrete qual-
ifies numerical solution techniques, as much as the terms analytical and continuous do for
procedures aimed at finding exact mathematical expressions for a solution, when they exist.
To a large extent PDEs, being used in mathematical modelling, are of the second order,
which means that the highest partial derivative order of the unknown fields appearing in
the equations is two. For this reason, a particular emphasis is given to this class of PDEs
throughout the text. However, for the sake of conciseness and clarity, we will confine the
whole presentation of the numerical methods to the case of linear differential equations.
Nevertheless, the types of linear PDEs to be studied are the most frequently encountered in
practical applications, namely, elliptic, parabolic and hyperbolic equations. We assume
throughout the text that the reader is familiar with basic concepts of linear PDEs of these
representative types. Nevertheless, it would not be superfluous to recall the criteria that
characterise them, by restricting the definitions to the case where the solution w of a linear
second-order PDE is a function of two independent variables r and s, and moreover to the
case of constant coefficients, that is, an equation of the form
w? Ow? ow? ow o
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where G is a given function and A% + B? + C? > 0. Letting A = B?> — AC, we have:
e If A > 0, the equation is hyperbolic:
e If A = 0, the equation is parabolic;

e If A < (), the equation is elliptic.

One of the main differences between the three types of equations relies on the boundary
and/or initial conditions that must be prescribed, in order to ensure existence and uniqueness
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of a solution. This issue will be clarified in Chapter 3, as far as the first two types of PDEs are
concerned, and in Chapter 4, whose purpose is the study of the Poisson equation, the most
typical elliptic PDE.

As many authors believe, in starting from linear PDEs, it is easier to take on otherwise
challenging and complicated problems in more advanced studies. Furthermore, this linear
approach has an undeniable virtue: if a numerical method is unreliable to find solutions to a

simplified linear (i.e. a linearised form), of a true nonlinear model, let alone its application to
the latter.

Scope

First of all, we should emphasise that in contemporary numerical simulations of complex
physical events, powerful computational tools such as graphics processing units (GPUs) are at
practitioners” disposal. Moreover, high-performance techniques to optimise simulation codes,
in order to save RAM and storage in general and make them run faster, have been in current
use for the past few decades. Here one might think of vectorisation, a technique aimed at
speeding up matrix and vector arithmetics, featuring more recent scientific computing-oriented
programming languages such as FORTRAN 95 and MATLAB. Parallel computing based on
distributed systems consisting of a computer network or several processors running concur-
rently in parallel, in order to accomplish different tasks of large-scale numerical processing,
has been a facility in use in research centers and industries around the world for a few decades
now. Although we are convinced that the reader should be aware of these possibilities,
we do not address them at all because our book is an introductory one. In other words, its
scope is limited to the study of numerical methods in the framework of rather simple model
problems, whose solutions do not require sophisticated tools employed in intensive computer
simulations.

The subject this book deals with is continuously evolving. New proposals for the numerical
solution of PDEs of particular types are being published in specialised journals practically
every week. However, a glance at the present state of the art suffices to show out that a
milestone was reached about 50 years ago. At that time, the concepts lying behind three big
families of discretisation methods to solve PDEs became well accepted in the worldwide
scientific and industrial communities. More precisely, we mean the finite difference method
(FDM), the finite element method (FEM) and the finite volume method (FVM), which
we chose to study in detail in this book, as techniques playing central roles among several
ingredients, in a recipe for the computational determination of numerical solutions to
PDEs.

The FDM is the oldest and the simplest numerical method to solve differential equations. It
has been known since Euler’s work in the 18th century, and countless specialists in numerical
mathematics contributed to its development up to now. Its routine use among specialists in
the numerical solution of PDEs dates back to the beginning of the 20th century. Pioneering
work of Courant, Friedrichs and Levy in Europe and in the United States (cf. [55]) set the
bases to justify the method’s effectiveness and reliability. Almost in parallel, Gerschgorin
[85] derived decisive results in the framework of numerical analysis as applied to PDEs.
Much later, other prominent members of the Russian school such as Godunov [91] and
Marchuk [133] gave relevant contributions in this direction. The latter also collaborated hand
in hand with Lions (cf. [127]), the respected founder of the prolific Paris school of analysis
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and numerical mathematics for PDEs in the late 1960s. However as Lions himself and his
disciples realised very soon, the development of the FDM was considerably slowing down
in the last third of the 20th century, because of its limitation to handle efficiently complex
geometries and/or boundary conditions. Nevertheless, the author should stress that, owing
to its simplicity and easy implementation, as a rule the FDM should be preferred to other
methods, as long as severe applicability restrictions do not come into play. This certainly
explains why the method is still very popular today.

In contrast, from the mid-1950s on, the FEM gradually emerged as a flexible tool capable
of giving appropriate responses to most geometric and mathematical challenges encountered
in practical applications of PDEs, more particularly in engineering. At that time, work on
this new numerical simulation technique was carried out simultaneously in several places,
in connection with big-aircraft industry among other major building or manufacturing
enterprises. The method was tailored to its present form by people like Clough, Turner [196]
and co-workers in the United States; Argyris [8] in Germany and in England: Zienkiewicz
[210] in Wales: Fraeijs de Veubeke in Belgium [75] and Arantes e Oliveira in Portugal [7],
among many other names.

A little later the FVM appeared as a new tool, aimed at overcoming the aforementioned lim-
itation of the FDM. Scientists like Samarskii and Tikhonov | 193] from the the Russian school
can be credited as outstanding developers of the FVM, as much as Spalding and Patankar in
the United Kingdom (cf. [151] and [152]). A remarkable growth of the method’s user commu-
nity followed, and to date several commercial simulation codes widely in use in industry are
FVM-based, more particularly in fluid dynamics. Such a great success seems to be due to the
fact that the principles the method is based upon are close to those of physics. Indeed, by using
this method, local mass or heat fluxes, discharges among many other fundamental physical
quantities, can be easily controlled in a direct and transparent manner. This is certainly
very appealing to industry designers who ordinarily are not available to undertake too many
technical interventions in order to run a simulation code, or to post-process numerical results.

On the other hand, the FEM is by far the richest among these three numerical methods.
in terms of both versions and applicability. The number of efficient FEM packages available,
as applied to a wide spectrum of technological domains, is very large, and this is particularly
true of structural analysis. Actually, the range of the FEM and its multiple variants to solve
countless classes of problems governed by PDEs is steadily growing, and is practically
unlimited. This has certainly something to do with the method’s great versatility. However, it
is true that in some domains such as fluid dynamics, good use and understanding of the FEM
require some more mathematical insight. which is perhaps the reason why the FVM is often
preferred in such applications.

These preliminary considerations on the strengths and weaknesses of the three methods

will be enriched by additional comments to be made as they are presented and studied along
the chapters.

Approach

It is important to recall that values provided by the numerical solution procedure are only
approximations of those of the theoretical solution, at least in an overwhelming majority
of cases. But then a fundamental question arises: How reliable are such approximations
as compared to the corresponding values the model would provide if it could be solved
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analytically? An attempt is made to give precise answers to this question without resorting to
functional analysis, in contrast to what many authors do.

Actually, in a book aimed at being used in the framework of an introductory and intensive
course it would be advisable to avoid as much as possible going into details on mathematical
aspects of the numerical methods being presented. Addressing rather their functional features,
such as limits and merits in practical terms, or implementation, might be considered more
appropriate. However, many authors are persuaded that, for a better comprehension of
numerical methods, mastering underlying basic mathematical concepts is of paramount
importance. As a former assistant of the late Professor Daniel Euvrard at the Division of
Mechanics of the University of Paris 6, the author believes to have learned well with him
the right approach to motivate into the subject students in fields other than mathematics, and
to convince them why a numerical method is reliable or not. Nevertheless, in his book. he
declined to go into ultimate considerations on such aspects of numerical methods. This is
perhaps because he felt this would require mathematical concepts supposedly not mastered by
his students. Within a certain time after Daniel Euvrard passed away, the author endeavoured
to find means to render complete and rigorous reliability studies of numerical methods for
PDEs accessible to final-term undergraduate or graduate students in any scientific domain.
In a sense, this book is the outcome of what the author believes to be the ideal pedagogic
approach, after a rather long maturation period.

More precisely, we shall introduce and thoroughly exploit the concepts of stability, consis-
tency, convergence and order of a numerical method to solve PDEs, as fundamental tools to
understand why they work or not, or how well they work. This is because both the stability and
the consistency of a numerical method imply that it is reliable. More precisely, convergence
to an equation’s exact solution is guaranteed at a certain rate related to the method’s order.
However, it must be emphasised again that this book utilises neither high-level nor abstract
mathematics to qualify numerical methods. Indeed. only the mathematical knowledge a
student in scientific or technical fields is supposed to master, when she or he reaches the stage
of studying numerical methods for PDEs is taken for granted. Nevertheless in some cases,
optimality in the mathematical sense is sacrificed, so as to make possible such an approach.

In short, in many respects, this book can be viewed as original. The following issues should
definitively be underlined:

e The pre-requisites for full understanding of this book’s material are differential & integral
calculus in multiple variables, besides elementary analysis, tensor calculus, numerical
analysis and linear algebra. Of course, basics of differential equations including linear
PDEs are supposed to be known.

e The reliability analyses for the three methods are carried out in a unified framework, by
exploiting in a structured and visible manner the equivalence between convergence and the
pair of properties stability and consistency, that is to say, the Lax—-Richtmyer equivalence
theorem [123].

e In addition to this unified treatment, here and there new techniques are employed to derive
known results, thereby simplifying their proof.

e Emphasis is given to low-order methods, as practitioners’ overwhelming default options for
everyday use.

e In the chapters, any time a particular PDE’s feature is important for better comprehension

of a numerical solution method, the corresponding property is duly presented, recalled or
cited from the literature.
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e The book is placed halfway between texts addressed to students in mathematics and those
for students in other sciences. This means that a balanced emphasis is given to both practical
considerations and a rigorous mathematical treatment.

e To the best of the author’s knowledge several optimal results rigorously established in the
text cannot be found elsewhere, not even in more advanced books. In this sense, although this
one is basically education oriented, marginally it can also be a valid reference for research
work on numerical methods for PDEs.

More commonplace features are lists of exercises proposed at the end of each chapter.
Most of them are just complements to theoretical studies, in order to help the student to
consolidate her or his understanding of a particular issue. In some cases, exercises are simply
a way to abridge the text itself. In addition to this, several numerical examples are supplied
using codes programmed either in FORTRAN 95 language or in a MATLAB environment.
Almost all the given examples are academic in the sense that their exact solution is known
beforehand. This is because they are essentially aimed at either illustrating or assessing
methods’ approximation capabilities. By adding this kind of stuff to all chapters, our approach
turns out to be similar to the one adopted in some text books on the subject such as Hughes’
[100]. However, in contrast to this one, the latter are either devoted to a single type of method
or addressed to a specific scientific community. In short, coding was just aimed at supporting
the material addressed in the book and in no case a goal itself. This is the reason why we
did not care about using techniques such as vectorisation, parallelism or computational tools
more powerful than an ordinary laptop for running our examples. The reader will certainly
realise it by examining some of the programs incorporated into the text.

The general subject organisation throughout the book is as follows. For the sake of clarity
and objectiveness, the basic concepts inherent to numerical methods are first presented in
the framework of differential equations whose spatial definition domain is one-dimensional,
more specifically a bounded interval of the real line. Nevertheless, this presentation is
enriched by the treatment of the time-dependent case. This means equations having the
time as an independent variable, besides the space variable, which model the so-called
transient problems. Once these concepts are introduced in such a simplified framework,
their application to problems defined in domains of higher dimensions can be assimilated
more smoothly as we believe. However, we only apply to two-dimensional problems (surely
closer to real-life ones!) the conclusions in terms of reliability that the previous studies allow
for. A point of view shared by many authors is that this is good pedagogy, since properties
that hold for a multidimensional problem can often be regarded as mere extrapolations of
valid ones for lower dimensional counterparts.

From the beginning, we should point out that in a significant majority of cases, a numerical
method to solve boundary value problems leads to the solution of systems of linear algebraic
equations. Since such systems play a central role in the framework of numerical methods for
PDEs, throughout the text the acronym SLAE will be used instead of the expression in full.
The SLAE unknowns are usually approximations of the solution function at a set of points
of a discretisation lattice. As pointed out above, for this reason numerical methods are often
referred to as discretisation methods. Notice, however, that SLAE unknowns can also be other
expressions, depending on the solution function, such as derivatives, integrals or combinations
of all these.

Owing to the topic’s relevance, we supply right after this Introduction some reminders
of linear algebra as related to SLAEs, which will be particularly useful throughout the text.
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Whenever necessary, these will be complemented with further details on a method to solve
SLAEs particularly pertinent to a subject addressed in a given chapter.

Book’s outline

Following the introductory section on linear algebra, we describe in Chapter 1 the three dis-
cretisation methods named above, as applied to a one-dimensional model problem. Chapter 2
is devoted to mathematical analyses of these methods in such a simplified framework; more
precisely, the basic concepts that characterise the reliability of a numerical method for solving
a PDE are introduced. In Chapter 3, we apply the same concepts in order to examine schemes
for time-dependent counterparts of the model problem. In Chapter 4, we describe the use of the
three approaches to solve problems posed in two spatial dimensions without time dependence.
The aim of Chapter 5 is the rigorous mathematical study of numerical methods in two space
variables. Besides the problems addressed in Chapter 4, their time-dependent counterparts
are also considered. This chapter is by far the heaviest part of the book in terms of calcula-
tions, which could be left aside in a short or intensive course. In this case, the student could
just concentrate on the final results. Chapter 6 brings about several important extensions of
the material studied in all the previous chapters, in terms of practical applications, including
three-dimensional modelling. Chapter 7 is a complementary one; specific numerical methods
are considered for a few scattered but relevant classes of linear PDEs that are not studied in
the previous chapters. In the final section of Chapter 7, some basics of the numerical solution
of nonlinear PDEs close the book. This outline is completed by those supplied at the begin-
ning of each chapter, specifying its organisation and providing a brief summary of its different
sections.

To conclude, we must underline that in contemporary numerical simulations, users can count
on numerous methodological options. At an introductory level, however, it would be out of
purpose to attempt to address them all. That is what motivated our choice of three methods out
of several other techniques for solving PDEs. Nevertheless, for the reader’s information and
better guidance, we added an Appendix, where main lines are highlighted of several numerical
methods of current use not covered by the book. More specifically, brief descriptions are given
of the boundary element method, discontinuous Galerkin methods, meshless methods, spectral
methods, hybrid finite elements, iso-geometric analysis, the virtual element method, domain
decomposition techniques and multigrid methods.

WARNING

Throughout the text, the range of any subscript or superscript is assumed to be sufficiently
large. for the surrounding statements or formulae involving it to make sense.

Incidentally it should be stressed that, to a great extent, numerical analysis is the art of
handling concepts closely related to integer symbols standing for array subscripts, grid point
positions, time stages or iteration numbers in recursive procedures, among many other abstract
things of unspecified dimensions or sizes. For this reason, the reader should be aware that
following such notations requires much attention. Moreover, symbol-correct typing forces
authors on the subject to make an iterative improvement of their texts, a process that usually
converges very slowly, and eventually never converges ...



