# NUCLEAR STRUCTURE PHYSICS

Editors: S. J. HALL J. M. IRVINE

Proceedings of the
Eighteenth Scottish Universities Summer School
in Physics
1977

## Nuclear Structure Physics

Proceedings of the Eighteenth Scottish Universities Summer School in Physics St. Andrews, August 1977

A NATO Advanced Study Institute

Edited by

S.J. HALL

University of Glasgow, Scotland.

and

J.M. IRVINE

University of Manchester, England.

Published by the Scottish Universities Summer School in Physics

#### SUSSP PUBLICATIONS

Edinburgh University Physics Department
King's Buildings, Mayfield Road
Edinburgh.

Further copies of this book may be obtained directly from the above address.

Copyright © 1978

by the Scottish Universities Summer School in Physics

All rights reserved

No part of this book may be reproduced in any form by photostat, microfilm, or any other means without written permission from the publishers.

ISBN 0 905945 01 8

#### PREVIOUS SUSSP PROCEEDINGS

### Published by Oliver & Boyd (Edinburgh)

1960 Dispersion Relations

1977 Nuclear Structure Physics

18

| 2  | 1961 | Fluctuation, Relaxation and Resonance in Magnetic Systems    |
|----|------|--------------------------------------------------------------|
| 3  | 1962 | Polarons and Excitons                                        |
| 4  | 1963 | Strong Interactions and High Energy Physics                  |
| 5  | 1964 | Nuclear Structure and Electromagnetic Interactions           |
| 6  | 1965 | Phonons in Perfect and Imperfect Lattices                    |
| 7  | 1966 | Particle Interactions at High Energies                       |
| 8  | 1967 | Mathematical Methods in Solid State and Superfluid Theory    |
| 9  | 1968 | Physics of Hot Plasmas                                       |
|    |      | Published by Academic Press                                  |
| 0  | 1969 | Quantum Optics                                               |
| .1 | 1970 | Hadronic Interactions of Electrons and Photons               |
| .2 | 1971 | Atoms and Molecules in Astrophysics                          |
| .3 | 1972 | Electronic/Structural Properties of Amorphous Semiconductors |
| 4  | 1973 | Phenomenology of Particles at High Energies                  |
| .5 | 1974 | The Helium Liquids                                           |
| .6 | 1975 | Non-Linear Optics                                            |
|    |      | Published by SUSSP                                           |
| .7 | 1976 | Fundamentals of Quark Models                                 |

Forthcoming Publications

1978 Metal Non-metal Transitions in Disordered Systems

#### EXECUTIVE COMMITTEE

Reid, Professor J.M.,

Crawford, Dr. I.

Whitehead, Dr. R.R.

Hall, Dr. S.J.

Irvine, Dr. J.M.

Ledingham, Dr. K.

Owen, Dr. R.

Shotter, Dr. A.

Watt, Dr. A.

Glasgow, (Director)

Glasgow, (Secretary)

Glasgow, (Treasurer)

Glasgow, (Joint Editor)

Manchester, (Joint Editor)

Glasgow, (Social Secretary)

Glasgow, (Steward)

Edinburgh, (Steward)

Glasgow, (Steward)

#### LECTURERS

England, Dr. J.B.A.

Green, Professor A.M.

Greiner, Professor W.

Jackson, Professor D.F.

MacFarlane, Professor M.

Pauli, Professor H.C.

Penner, Dr. S.

Scott, Professor D.K.

Specht, Professor H.J.

Speth, Professor J.

Birmingham University, U.K.

Institute of Theoretical Physics, Helsinki, Finland.

Frankfurt University, Germany.

Surrey University, U.K.

Argonne National Laboratory,

U.S.A.

Max-Planck Institute,

Heidelberg, Germany.

N.B.S., Washington D.C., U.S.A.

L.B.L. California University,

U.S.A.

Heidelberg University, Germany.

Institut fur Kernphysik, Julich,

Germany.

#### PARTICIPANTS

Dr. M da C Abreu. Lisbon

Mr. M.S. Afghani, Bradford

Mr. A. Al-Naser, Liverpool

Mr. C.G. Andersson, Lund

Mr. X.A. Aslanoglou, Demokritos

Mr. S. Baird, Birmingham

Mr. A. Bockisch, Germany

Mr. J.M. Cavedon, Saclay

Mr. G.L. Cleland, Glasgow

Mr. M.C. Cooke, Harwell

Dr. T.M. Cormier, Stony Brook

Dr. J. Cugnon, Liege

Mr. R.P. DeVito, East Lansing

Mr. K.S. Dhuga, Birmingham

Dr. M. Durand, Grenoble

Dr. M. Faber, Wien

Dr. L.W. Fagg, Washington D.C.

Dr. H. Ferdinande, Ghent

Dr. D.J.S. Findlay, Glasgow

Mr. E. Flerackers, Limburgs

Mr. A.G. Flowers, Edinburgh

Dr. G. Fratamico, Bologna

Dr. K. Fukuda, Japan

Dr. Y.R. Gaillard, France

Miss S. Gary, Saclay

Dr. P.D. Giacomo, Frascati

Mr. D.J. Gibson, Glasgow

Dr. M.D. Glascock, Maryland

Mr. C.A. Harter, Manchester

Dr. H. Jasicek, Wien

Dr. R. Kamermans, Netherlands

Mr. A.M. Klein, Tel-Aviv

Mrs. E.A. Knight, Glasgow

Mr. R. Wadsworth, Liverpool

Mr. A.O. Williams, Manchester

Mr. J.P. Labrie, Montreal

Mr. J. Larysz, France

Mr. M.J. Leitch, M.I.T.

Dr. G. Lhersonneau, Leuven

Mr. C.J. Lister, Liverpool

Mr. M.N. Martins, Sao Paulo

Mr. M. Modarres, Manchester

Professor G.M. Morrison, Birmingham

Dr. D. Muller, Princeton

Mr. J. Okolowicz, Poland

Dr. R.O. Owens, Glasgow

Dr. A. Pantaleo, Bari

Dr. G. Pantaleo D'Erasmo, Bari

Dr. Phan-Xuan-Ho, Saclay

Dr. S. Plattard, Bruyeres-le-Chatel

Mr. Polls-Marti, Granada

Mr. G. Proudfoot, Oxford

Dr. R.M. Ronningen, Heidelberg

Dr. J. Sanchez-Dehesa, Julich

Dr. A.M. Saruis, Bologna

Dr. R. Schwentker, Mainz

Mr. F. Sever, Ljubljana

Dr. P. Singer, Heidelberg

Dr. E. Spamer, Darmstadt

Dr. F. Stancu, Leige

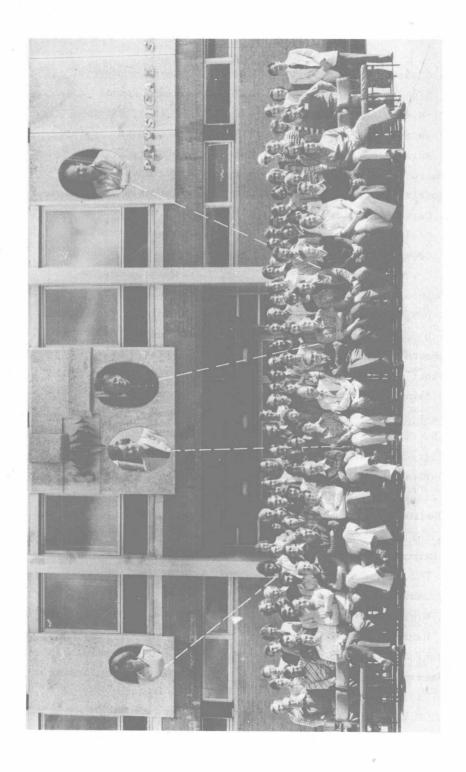
Dr. R.S. Storey, Ottawa

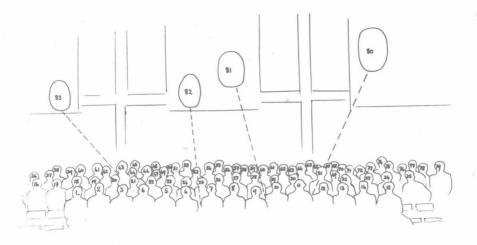
Dr. H. Thierens, Ghent

Mr. J.A. Tostevin, Guildford

Miss S. Turck, Saclay

Dr. H. Van der Voorde, Leuven


Mr. B.J. Varley, Manchester


Mr. J. Verplancke, Leuven

Dr. A. Vidal-Quadras, Barcelona

Dr. A. Wolf, Beer-Sheba

Dr. A. Zucchiatti, Genoa





#### Key to group photograph

| Ι. | A | Shotter |
|----|---|---------|
| 2  | T | C       |

- I Crawford
- 3. J Speth
- 4. H C Pauli
- A M Green 5.
- 6. W Greiner
- 7. D F Jackson
- 8. J M Reid
- 9. J B A England
- 10. M H MacFarlane
- 11. S Penner
- 12. A Watt
- 13. R R Whitehead
- 14. S J. Hall
- 15. K Ledingham 16. G Lhersonneau
- 17. A Al-Naser
- 18. M Modarres
- 19. D Muller
- 20. A Wolf
- 21. G Fratamico
- 22. P Singer
- 23. N Pacholek
- 24. P Di Giacomo
- 25. M da C Abreu 26. G D'Erasmo
- 27. S Turck
- 28. F Stancu

- 29. S Gary
- 30. P Anderson
- 31. M N Martins
- 32. A M Sarius
- 33. R Wadsworth
- 34. C J Lister
- 35. Y R Gaillard
- 36. R Schwentker
- 37. A Zucchiatti
- 38. L W Fagg
- 39. E Spamer
- 40. R Kamermans
- 41. M J Leitch
- 42. C G Anderson
- 43. S Baird
- 44. J Cugnon
- 45. D J Gibson
- 46. K S Dhuga
- 47. R P de Vito
- 48. R S Storey
- 49. A Bockisch
- 50. C A Harter
- 51. M C Cooke
- 52. A Vidal-Quadras
- 53. A Pantaleo
- 54. A Polls-Marti
- 55. M D Glascock
- 56. J Sanchez-Dehesa

- 57. X A Aslanoglou
- 58. M S Afghani
- 59. A M Klein
- 60. J A Tostevin
- 61. B J Varley
- 62. P Martin
- 63. J M Cavedon
- 64. D J S Findlay
- 65. H. Jasicek
- 66. A G Flowers
- 67. H Ferdinande
- 68. J Larysz
- 69. Phan-Xuan-Ho
- 70. M Faber
- 71. H Thierens
- 72. T M Cormier
- 73. R M Ronningen
- 74. S Plattard
- 75. F Sever
- 76. G L Cleland
- 77. J Okolowicz
- 78: G Proudfoot
- 79. K Fukuda
- 80. J M Irvine
- 81. H J Specht
- 82. D K Scott
- 83. E A Knight

#### DIRECTOR'S PREFACE

The Eighteenth Scottish Universities Summer School in Physics was held in the University of St. Andrews from 31st July - 20th August, 1977.

It is twelve years since the Scottish Universities' Summer School in Physics was last devoted to the subject of Nuclear Physics and the school reflected the many advances, both in theoretical understanding and experimental technique, which have taken place in the intervening years. We felt it appropriate to pay particular attention to the developments in heavy ion physics and electromagnetic interactions with nuclei.

We were fortunate to be able to call on a body of lecturers who not only have made considerable personal contributions to these advances but who are also noted for their lecturing skills. Their enthusiasm for their subject was readily transmitted to the students resulting in a very successful school. These Proceedings I believe will prove a significant contribution to the literature on Nuclear Physics and will help to spread the benefits of the school to a larger audience than those who were able to attend.

The School was sponsored by and had the support of the eight Scottish Universities and the Scientific Affairs Division of NATO.

The participants, the lecturers and their families were housed in David Russell Hall and we are greatly indebted to the Warden, Dr. C. Ingram and the Domestic Bursar, Mrs. Ferguson, for the excellent organisation, catering and other arrangements. The lectures and seminars were held in the Physics Building of the University and it is a pleasure to acknowledge the kind assistance and hospitality accorded us by Professor J.F. Allen and his staff. In particular we are grateful to Dr. D.M. Finlayson and Dr. N. McGill.

Finally I wish to acknowledge the contributions made by all those who helped to organise and run the School. Ian Crawford, as Secretary, handled all the correspondence for School before, after and during our stay in St. Andrews. Sam Hall and Max Irvine edited a volume that at times threatened to grow without limit. Rex Whitehead managed to balance the books. Ken Ledingham organised the social activities while my wife Jean arranged the ladies programme.

Bob Owen, Alan Shotter and Sandy Watt fetched and carried and generally attended to the hundred and one duties which were required for the smooth running of the School.

#### EDITORS' NOTE

The articles in this volume have been prepared by the authors and are based closely on the lectures presented at the Summer School. Editing has been minimal, directed towards correcting errors and achieving some degree of uniformity of notation throughout the volume.

In addition to the formal lectures a number of informal seminars on Mesonic Effects in Nuclei, Gas Filled Detectors, Giant Dipole Resonances, Heavy Ion Potentials, Fission, C.W. Accelerators, Giant Multipole Resonances and Photonuclear Reactions were held but these are not recorded in these Proceedings.

We are grateful to J. Spark, T. McQueen and B. McAndie for technical assistance during the period of the School and to Norma Pacholek, Heather Kimber and Pat Anderson for secretarial assistance throughout the preparation of the Proceedings.

Finally, we should like to express our gratitude for the unprecedented co-operation which we received from our Lecturers.

#### CONTENTS

MICROSCOPIC MODELS OF NUCLEI

Shell Nuclei

Interaction

2.7

1. Shell Theory and Single-Particle Excitations

M.H. MacFARLANE

#### 1.1 Introduction 1 1.2 The Phenomenological Single-Particle Potential 1.3 Velocity-Dependence, Hartree-Fock and the Harmonic-Oscillator Approximation 12 1.4 Single-Particle Excitations; Single-Hole Excitations and Nuclear Spectra 1.5 Theory of Angular Momentum - Notation and Wigner-Eckart 17 Theorem. 22 Fractional Parentage and Spectroscopic Factors 2. Many-Body Theory and Phenomenology in the Derivation of the 28 Shell-Model Hamiltonian 2.1 Model Spaces and Effective Interactions in Nuclear Shell 28 Theory Nuclear Matter, the Brueckner G-matrix and why the Shell-2.2 33 Model works 2.3 Brueckner-Hartree-Fock (BHF) Calculations of Double Closed

2.4 Microscopic Calculations of the Shell-Model Effective

2.5 Phenomenological Shell-Model Effective Interactions

Summary - Semi-Realistic Interactions

2.6 Many Particle Contributions to the Effective Interaction

1

51

66

75

77

| 3.    | Calculational Techniques in Many-Particle Shell Theory                     | 78  |
|-------|----------------------------------------------------------------------------|-----|
|       | 3.1 Historical Background and the Alternative Strategies                   | 78  |
|       | 3.2 The Traditional Strategy and Multi-Shell Spectroscopy                  | 79  |
|       | 3.3 The Computer-Oriented Strategy and the Lanczos Algorithm               | 85  |
|       | 3.4 The Centre-of-Mass Problem in Nuclear Shell Theory                     | 92  |
|       | 3.5 The State of the Art - Assessment and Future Prospects                 | 94  |
|       | References                                                                 | 96  |
| THE 1 | NEW GIANT RESONANCES                                                       |     |
| J. SI | PETH                                                                       |     |
| 1.    | Introduction                                                               | 101 |
|       | 1.1 Liquid Drop Model                                                      | 102 |
|       | 1.2 Harmonic Oscillators                                                   | 104 |
|       | 1.3 Experimental Situation of the GQR                                      | 105 |
| 2.    | Random-Phase Approximation                                                 | 108 |
|       | 2.1 Basic Formulas                                                         | 108 |
|       | 2.2 Different Numerical Approaches                                         | 110 |
|       | a) Shell-Model R.P.A. Calculations                                         | 110 |
|       | b) Self-consistent R.P.A. Calculations                                     | 110 |
| 3.    | 1p-1h R.P.A. Results                                                       | 111 |
| 4.    | Spreading Widths of GQR in <sup>16</sup> 0 and <sup>208</sup> Pb           | 116 |
|       | 4.1 Structure of the GQR in 160                                            | 117 |
|       | 4.2 Fine Structure of the GQR in $^{16}\mathrm{O}$ and $^{208}\mathrm{Pb}$ | 118 |
| 5.    | Magnetic Resonances and the Spin-Dependent Part of the p-h Interaction     | 122 |
|       | 5.1 The Low-Lying Giant M1 Resonances                                      | 123 |
|       | 5.2 The High-Lying Giant M1 Resonances                                     | 126 |
|       | References                                                                 | 130 |
|       | T RANGE CORRELATIONS DUE TO ISOBAR CONFIGURATIONS  GREEN                   |     |
| 1.    | Introduction                                                               | 133 |
| 2.    | The Importance of Isobars                                                  | 134 |

| 3. | The Transition Potentials                                                                                                                                                                                                                           | 136                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 4. | Generating Isobar Configurations                                                                                                                                                                                                                    | 139                                           |
| 5. | A Recent Development                                                                                                                                                                                                                                | 142                                           |
| 6. | Isobar Configurations in Few Nucleon Systems 6.1 Isobar Components in the Deuteron 6.2 Isobar Components in <sup>3</sup> He 6.3 The Effect of Isobar Configurations                                                                                 | 147<br>147<br>149<br>149                      |
| 7. | Conclusions                                                                                                                                                                                                                                         | 153                                           |
|    | References                                                                                                                                                                                                                                          | 156                                           |
|    | TION THEORY  JACKSON                                                                                                                                                                                                                                |                                               |
| 1. | Introduction                                                                                                                                                                                                                                        | 159                                           |
| 2. | Theoretical Techniques  2.1 Partial Wave Methods  2.2 Green's Function Techniques  2.3 Approximate Methods  2.4 Multiple Scattering Expansions  2.5 Two-Potential Formulae  2.6 Theory of the Generalized Optical Potential and Compound Resonances | 160<br>160<br>162<br>164<br>167<br>169<br>170 |
| 3. | Applications and Interpretation 3.1 Folding Models for Optical Potentials                                                                                                                                                                           | 174<br>174                                    |
|    | 3.2 A Resonance Reaction - Alpha-Decay 3.3 Antisymmetrisation in Nuclear Scattering 3.4 Heavy Ion Peripheral Collisions                                                                                                                             | 178<br>182<br>185                             |
| 4. | Outstanding Problems                                                                                                                                                                                                                                | 188                                           |
|    | References                                                                                                                                                                                                                                          | 190                                           |
|    | RIMENTAL TECHNIQUES IN NUCLEAR PHYSICS  A. ENGLAND  General Instrumentation                                                                                                                                                                         | 193                                           |
|    | 1.1 Introduction                                                                                                                                                                                                                                    | 193                                           |

|    | 1.2 Ion Sources                                      | 195 |
|----|------------------------------------------------------|-----|
|    | 1.3 Accelerators                                     | 198 |
|    | 1.4 Beam Transport Systems                           | 200 |
|    | 1.5 Target Effects                                   | 202 |
|    | 1.6 Beam Measuring Systems                           | 204 |
|    | 1.7 Conclusions                                      | 205 |
| 2. | Charged Particle Dection I                           | 205 |
|    | 2.1 Introduction                                     | 205 |
|    | 2.2 Energy Loss, Particle Range and Statistics       | 206 |
|    | 2.3 Multiwire Proportional Chambers                  | 212 |
|    | 2.4 Conclusion                                       | 214 |
| 3. | Charged Particle Detection II                        | 214 |
|    | 3.1 Introduction                                     | 214 |
|    | 3.2 MWPC for Nuclear Structure Research              | 214 |
|    | 3.3 Position Sensitive Proportional Counters         | 218 |
|    | 3.4 Parallel Plate Chambers                          | 220 |
|    | 3.5 Drift Chambers                                   | 221 |
|    | 3.6 Multiparameter Detectors                         | 223 |
|    | 3.7 Conclusion                                       | 225 |
| 4. | High Resolution Systems I                            | 225 |
|    | 4.1 Introduction                                     | 225 |
|    | 4.2 Semiconductor Detectors for Charged Particles    | 226 |
|    | 4.3 Position Sensitive Semiconductor Detectors       | 230 |
|    | 4.4 Si(Li), Ge(Li) and Intrinsic Germanium Detectors | 233 |
|    | 4.5 Fast Timing Systems                              | 235 |
|    | 4.6 Conclusion                                       | 238 |
| 5. | High Resolution Systems II                           | 238 |
|    | 5.1 Introduction                                     | 238 |
|    | 5.2 Higher Order Focussing Fields                    | 239 |
|    | 5.3 Kinematic Correction                             | 241 |
|    | 5.4 Spectrometer Systems with Single Dipole Elements | 243 |
|    | 5.5 Spectrometers with Multiple Dipole Elements      | 248 |
|    | 5.6 Conclusion                                       | 253 |
| 6. | Identification Methods                               | 253 |
|    | 6.1 Introduction                                     | 253 |

|      | 6.2   | Time-of-Flight Systems for Charged Particles      | 254 |
|------|-------|---------------------------------------------------|-----|
|      | 6.3   | Single Detector Systems                           | 257 |
|      | 6.4   | Particle Identification by Energy Loss Telescopes | 258 |
|      | 6.5   | Magnetic Spectrometers as Particle Identifiers    | 260 |
|      | 6.6   | Velocity Filters and On-Line Mass Spectrometers   | 261 |
|      | 6.7   | Enhancement of Gamma Rays from High Spin States   | 262 |
|      | 6.8   | Problems and Questions                            | 263 |
|      | 6.9   | Conclusion                                        | 263 |
|      | Refe  | rences                                            | 264 |
|      |       |                                                   |     |
| ELEC | TRON  | SCATTERING                                        |     |
| S. P | ENNER |                                                   |     |
| 1.   | Intr  | roduction                                         | 269 |
|      | 1.1   | General Overview                                  | 269 |
|      | 1.2   | Historical Development                            | 271 |
| 2.   | Theo  | ry                                                | 275 |
|      | 2.1   | The General Born Approximation Cross Section      | 275 |
|      | 2.2   | Coulomb Distortion                                | 279 |
|      | 2.3   | Higher Order Corrections                          | 282 |
|      | 2.4   | Radiative Tails                                   | 286 |
|      | 2.5   | Thick Target Effects                              | 287 |
| 3.   | Expe  | rimental Considerations                           | 288 |
|      | 3.1   | Magnetic Spectrometers                            | 288 |
|      | 3.2   | Energy Loss Systems                               | 290 |
|      | 3.3   | Detector Systems                                  | 292 |
|      | 3.4   | Energy Calibration                                | 295 |
|      | 3.5   | Beam Charge Measurement                           | 297 |
|      | 3.6   | Geometry                                          | 298 |
| 4.   | Elas  | tic Scattering                                    | 299 |
|      | 4.1   | Interpretation of Experimental Data               | 299 |
|      | 4.2   | Charge Scattering                                 | 302 |
|      | 4.3   | "Model Independent Analysis"                      | 304 |
|      | 4.4   | Muonic X-ray Data                                 | 307 |
|      | 4.5   | Magnetic Elastic Scattering                       | 308 |

| 5.   | Inelastic Scattering                                                       | 310     |
|------|----------------------------------------------------------------------------|---------|
|      | 5.1 Nuclear Spectroscopy by Inelastic Electron Scatterin                   | ig 310  |
|      | 5.2 Scattering from Discrete Nuclear States                                | 314     |
|      | 5.3 Continuum Scattering                                                   | 319     |
| 6.   | Coincidence Experiments                                                    | 322     |
|      | 6.1 General Considerations                                                 | 322     |
|      | 6.2 Quasielastic Scattering                                                | 326     |
|      | 6.3 Future Coincidence Possibilities                                       | 329     |
|      | References                                                                 | 332     |
| COLL | ECTIVE NUCLEAR MODELS AND THEIR APPLICATIONS                               |         |
| P.O. | HESS AND W. GREINER                                                        |         |
| 1.   | Collective Model for Low-Energy Spectra                                    | 339     |
|      | 1.1 The Quadrupole Co-ordinate                                             | 341     |
|      | 1.2 The Potential Energy Surface (PES)                                     | 344     |
|      | 1.3 The Operator of the Kinetic Energy                                     | 347     |
|      | 1.4 The Hamiltonian                                                        | 348     |
|      | 1.5 The Eigenstates of the Five-Dimensional Oscillator                     | 349     |
|      | 1.6 Diagonalization of H and Convergence of the Numerica                   | al 351  |
|      | Procedure                                                                  |         |
|      | 1.7 Examples of Spectra                                                    | 355     |
|      | 1.8 Summary                                                                | 371     |
| 2.   | Improvement of the Gneuss-Greiner Model                                    | 371     |
|      | 2.1 The Hamiltonian of the Five-Dimensional Oscillator a βγ-Representation | in 372  |
|      | 2.2 Eigenfunctions of the Hamiltonian                                      | 373     |
|      | 2.3 New Terms of the Potential                                             | 376     |
|      | 2.4 Summary                                                                | 379     |
| 3.   | Coupling of Giant Resonance States with the                                | 379     |
|      | Low-Energy Spectra                                                         |         |
|      | 3.1 The Hamiltonian of the Dynamic Collective Model                        | 380     |
|      | 3.2 Hydrodynamical Model for GRS                                           | 380     |
|      | 3.3 The Interaction Operator $H_{DQ}$                                      | 384     |
|      | 3.4 The Basis States for Diagonalization                                   | 386     |
|      | 3.5 The Dipole-Operator and the $\gamma$ -Absorption Cross-Section         | ion 386 |
|      | 3.6 Results                                                                | 387     |
|      |                                                                            |         |