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Towards Better Base Classifiers for Ensemble Classification of Gene Expression Data

William Duncan
Computer Science Division
Louisiana State University

Baton Rouge, LA 70803
duncan@csc.lsu.edu

Abstract

Classification using gene expression data has the potential
to provide better cancer diagnosis. A main challenge in
such classification is to train a good model using a
(relatively) small number of examples, each involving a
large number of genes. Ensemble of classifiers that are
based on subsets of genes has been proposed to cope with
this situation. Although a lot of works have explored
different techniques to create gene subsets, few work has
considered the impact of the type of the classifiers on the
performance of the ensemble. Since different types of
classifiers have different characteristics, they may lead to
different performance. We investigated the effects of
classifier flexibility and regularization of the classifiers on
the classification accuracy of the ensemble. Our results
suggest that rather than flexibility, regularization is a
more important direction to explore for achieving higher
accuracy. In particular, L1-regularization leads to the best
performing ensemble. Interestingly, such performance
advantage is obtained not by implicit feature selection but
by reducing the influence of correlated genes.

Keywords: Ensemble Classification, L1 Regularization

1 Introduction

With the advance in DNA microarray technology, the
expression levels of thousands of genes can be
simultaneously measured in a single experiment. This
opens a door to better diagnosis of cancers and other
diseases. Diagnosis using gene expression data based on
statistical and computational models has been subject to
intensive researches in both the biomedical and the
computer science community [1-6]. The diagnosis
problem is essentially a classification problem: a classifier
(model) can be trained using gene expression data
obtained from groups of cancer/disease patients as well as
normal persons. Once trained, the classifier can be used to
predict (diagnosis) other people whose condition is
unknown.

One of the main difficulties in classification using
gene expression data is the small number of training
examples v.s. the large number of features, i.e., genes.
This leads to overfitting where the trained classifier fits to
a few specific cases in a particular collection of training
examples and cannot generalize to the other cases in the

Jian Zhang
Computer Science Division
Louisiana State University

Baton Rouge, LA 70803
zhang@csc.lsu.edu

same class. For example, even though in reality, a gene
(or a few genes) may not be relevant to a disease
condition, the expression level of the gene(s) may appear
as good indicator(s) for the condition if we look at only a
very small number of examples (persons). A classifier
trained using these examples will employ the gene(s),
resulting in almost perfect classification for the training
examples but very poor classification for other cases.

Ensemble method [7, 8] is an approach used to cope
with this problem. Instead of training a single classifier, a
collection of classifiers are trained and then combined to
perform classification. The classifiers in the ensemble are
called base classifiers. The base classifiers are often
simpler. For example, they can be built upon a relatively
small subset of genes. By focusing on a small subset of
genes, we may avoid some of the “appear-to-be-good”
genes. (In statistical terms, this lowers the variance.) On
the other hand, because the subset of genes used may not
be sufficient to capture the characteristic of the data fully,
the individual base classifier may still not classify well.
(In statistical terms, the base classifier has high bias.) The
ensemble, by combining a collection of base classifiers,
can take advantage from both sides, i.e., it is affected less
by the “appear-to-be-good” genes and at the same time
can be flexible enough to fit the data.

Clearly, an effective ensemble requires careful design
to take full advantage from both sides. The design
involves choice of techniques to generate the gene
subsets, choice of base classifiers and choice to combine
the output from the base classifiers to form the final
prediction. Many works have looked into different
techniques for creating gene subsets. Besides constructing
subsets of genes by random selection [7, 8], researchers
have investigated methods such as genetic algorithm [9,
10], partition based on Markov blanket [9, 11]. Also many
classifiers have been used as base classifiers in an
ensemble, e.g., tree classifier [12], nearest neighbor
classifier (knn) [11], naive Bayes classifier [11] and
Support Vector Machine [9, 10] as a few examples.

Different types of classifiers have different
characteristic. For example, tree classifier is more flexible
than a linear classifier. (Consider a two-class
classification. A linear classifier divides the space where
the data lie into two regions by a hyperplane. On the other



hand, a tree classifier can divide the space into many
regions.) Furthermore, classifiers with regularization
perform implicit feature ranking that removes or reduces
the effects of redundant genes. These characteristics may
lead to different performances among ensembles that use
different types of classifiers as their base classifiers. In
this paper we investigate the effects of the choice of base
classifiers on the ensemble and focus on the following
two problems:

1. Would a flexible classifier serve as a better base
classifier?

2. Would a classifier with regularization serve as a
better base classifier?

We conducted experiments to evaluate 3 types of
classifiers serving as base classifiers for an ensemble: 1)
tree classifier, 2) L2- regularized linear classifier (SVM)
and 3) Ll-regularized linear classifier. Our results show
that in most cases, the ensembles that use regularized
(both L1 and L2) base classifiers perform better than the
one using the tree classifier. In all the cases, the ensemble
using L1-regularized classifier gives consistently the best
performance. This suggests that to design a good
ensemble, flexibility of the base classifier is not a main
concern but regularization techniques should be
considered. In particular, base classifiers with LI-
regularization may lead to an ensemble of better
classification. Furthermore, our results show that the
better performance is not due to implicit gene selection
but rather due to the small magnitude of the coefficients
caused by the regularization.

2 Method

We investigate the impact of different types of base
classifiers on the classification accuracy of an ensemble
by comparing the performance of the ensembles using the
following types of base classifiers: 1) tree classifier, 2)
L2- regularized linear classifier and 3) Ll-regularized
linear classifier. We focused on the ensemble whose base
classifiers are built on a small random subset of the genes.
We give the details of the ensemble and the based
classifiers in the following sections.

2.1 Ensemble of Classifiers Using Randomly Selected
Subsets of Genes

Let X = {x®,x®, .., xM} be the gene expression
data for the N training examples. XV is a d-dimension
vector containing gene expression values and d is the
number of genes involved in the data. Let Y =
yD,y®, ..., y™} be the corresponding class labels of
the training examples. We construct an ensemble using 3
steps:

1. From the set of d genes involved in the gene
expression data, construct M subsets of genes.
Each subset consists of k& randomly selected
genes.

2. Train M base classifiers. The ith base classifier is
trained using the training examples restricted to
the genes in the ith subset, i.e., each classifier is
trained using {RW,%@,..,8™} and labels
yD,y®, ., y™M}  where 8D is the vector
derived by taking the elements of x® that
correspond to the genes in the gene subset used
by the classifier.

3. To classify a new case, the classification results
from each base classifier are pooled together and
a final classification is made by majority voting.
When there are multiple classes (e.g., disease
condition 1, 2, etc), the case is classified as the
one with the most votes.

We constructed multiple ensembles using the above
approach. Different ensembles use different base
classifiers.

2.2 Classification Tree Classifier

Classification tree is a type of simple and widely used
classifier. A classification tree is constructed by
recursively growing nodes that partition the training
examples into groups with better and better impurity
measure. We used Gini index as the impurity measure for
our tree construction.

One important difference between the tree classifier
and a linear classifier is that they build different types of
decision boundaries. A decision boundary is the boundary
where points on one side belong to one class and points
on the other belong to the other. A tree classifier
partitions the space of the data points into multiple
regions and assigns a class label to each region. The
regions are delimited by multiple (axis-parallel) planes.
On the other hand, the decision boundary of a linear
classifier is a hyperplane in the data space. Thus, tree
classifiers are more flexible and may be able to deal with
situations where the data points of different classes cannot
be well separated using a hyperplane.

However, due to the same flexibility, tree classifiers
are quite susceptible to overfitting. In ensembles that use
tree classifiers, often shallow trees (trees of small levels)
are used. In our investigation, we experimented with tree
classifiers of different depth as base classifiers and used
the performance of the best tree classifier in comparison.

2.3 Regularized Linear Classifiers

Regularization is also a widely used technique in
statistics and machine learning to generate better models.
Classifiers are trained using training examples. The



training process determines the best parameters for the
classifier via optimization, often a minimization of the
classifier’s prediction error with respect to the training
examples. However, in many cases, there are multiple
solutions to the optimization problem. And in some other
cases, minimizing training error does not lead to the best
classifier (e.g., overfitting may happen). Regularization
deals with these scenarios following Occam’s razor, i.e.,
the law of parsimony. It adds a preference to the
optimization problem such that a simpler solution is
preferred. Formally, let w be the parameter (coefficient)
vector of a classifier and L(X, Y, w) be a loss function that
measures how well the classifier using w can make
prediction on the set of training data (X, Y). Rather than
training the classifier by minimizing L(X,Y,w), a
regularized classifier minimizes:

L(X,Y,w)+ p(w)

where p(w) is a penalty function. The norms of the
parameter vector are often used as penalty functions, for
example, L2 norm ||w||, = /¥ w? and L1 norm |lwl|, =
¥ |w;|. (When L2 norm is used as the penalty function, we
call the classifier L2-regularized. Same naming scheme
applies to Ll-regularized classifiers.) To investigate the
effectiveness regularization, we experimented with
support vector machine, a typical L2-regularized classifier
and the Ll-regularized logistic regression as base
classifiers.

2.3.1 L2-Regularized Linear Classifier: Linear
Support Vector Machine

Linear Support Vector Machine (SVM) [13, 14]
makes classification using a linear function in the form of:

f)=wx+b

A new data point x is classified into one class if
f(x) =0 and into the other class if f(x) < 0. The
parameter vector w and b are obtained by training the
SVM using a set of examples. Consider a two-class
classification. Suppose the class labels are encoded as “-
1” for one class and “+1” for another (ie., y® €
{-1,+41} ). To train an SVM is to perform the
optimization:

i @ i —
min A Z[y : (wx(‘) +b) 1]+ + lIwll3
i

(Eq. 2.1)
where [ * ], is the hinge loss function defined as

if x<0
otherwise’

[x]+ = {(:x

Although the formulation is for two-class
classification, multiclass classification can be carried out
using strategies such as one-vs-one or one-vs-rest. We
used linear SVM in our investigation. For each SVM as a
base classifier, the hyper parameter A is determined using
cross validation on the training data.

2.3.2 L1-Regularized Linear Classifier: L1-
Regularized Logistic Regression

With logistic regression, classification is performed
under a probabilistic framework. Suppose there are C
classes, i.e., y(i) €{1,2,...,C}. Given a vector x of the
gene expression values, the (conditional) probability that
the corresponding person belongs to a class ¢ (t # () is
defined to be

eWtx+by

z

Pr(y = t|x) =

(Eq. 2.2)

and for =C,

1
Pr(y = Clx) = 7

where Z = 1+ Y21 eWt**Pt is a normalizer that ensures
the probabilities of the classes for x sum up to one, i.c.,
T Pry =tlx) = 1.

To classify a new data point x, we calculate the
probability Pr(y = t|x) for all the classest = 1,2, ...,C.
x is assigned to the class that gives the largest probability.

The parameters ( w, and b, ) are obtained by
maximizing the log-likelihood (minimizing the negative
log-likelihood) of the training examples, i.e.,

WTMI'E - Z log Pr(y = y(i) |x(i))
by,by,... i

where Pr(y|x) follows the definition in Eq. 2.2. The L1-
regularized logistic regression adds a regularization term
to the optimization:

Jmin A —Z log Pr(y = y®@|x®) t + ZHW:”1
t

bq,by,... i

(Eq. 2.3)

Logistic regression is a linear classifier. Consider the
two-class classification scenario, the decision boundary is
defined by e¥***b: = 1, which is a hyperplane in the data
space. Also, comparing to L2 regularization, L1



regularization often results in a sparser classifier as the
regularization pushes some of the parameters to zero.

We used Ll-regularized logistic regression classifier
in our investigation. The hyper parameter L is also
determined using cross validation on the training data.

2.4 Evaluation Method

The ensembles were constructed and trained using the
same procedure except that the base classifiers are
different. We used 10-fold cross validation to evaluate the
performance of the different ensembles with different
types of base classifiers. Each dataset is randomly
partitioned into 10 batches. One batch is put aside as
testing data and the rest are used to train the ensemble.
The trained ensemble is then tested against the testing
data. The average accuracy of the ensemble over the 10
batches is used as the measure of its performance. The
same 10-batch partition is used in the evaluation of all the
ensembles.

3 Results
3.1 Data and Experimental Settings

Our experiments used publicly available gene
expression datasets. Table 3-1 lists the name and the
properties of these datasets. We used the Python
implementation of the tree classifier provided by Scikit-
learn [15]. For SVM, and regularized logistic regression,
we used the implementation from Liblinear [16]. Scikit-
learn provides a Python interface to Liblinear. The
experiments were run on a Linux PC with Intel Core i5
CPU.

Name Properties

ProstateTumor [17] | This data set contains prostate
tumor and normal tissues. There
are 102 samples, 10509 genes.
BrainTumorl [18] | This data set contains five
human brain tumor types. There
are 90 samples and 5920 genes.
BrainTumor2 [19] | This data set contains four
human brain tumor types. There
are 50 samples and 10367 genes.
This data set contains nine tumor
types. There are 60 samples and
5726 genes.

This data set contains eleven
tumor types. There are 174

9Tumors [20]

11Tumors [21]

samples and 12533 genes.

Table 3-1 Names and Properties of the Datasets
Used in the Experiments

Except different base classifiers, the ensembles are
configured exactly the same. Each ensemble contains 200
base classifiers. The size of the randomly-selected gene

subset is set to be the square root of the number of the
genes used in the dataset. A preliminary gene selection is
applied to the data before they are given to the ensembles.

3.2 Classification Accuracy

Figure 3-1 shows the classification accuracy of the
ensembles using different types of base classifiers.
Accuracy is measured as the fraction of the correct
classification over all test data. The figure plots the
average accuracy of 10 rounds of cross validation for each
method. Across the experiments, the standard deviation is
around 1-2%. Hence we omit the error bar in the plot. We
observe that across all the datasets except BrainTumor2
where SVM showed very poor performance, the
ensembles that use regularized (both L1 and L2) base
classifiers perform better than the one using tree
classifier. In particular, with the 11Tumor dataset, the
ensembles with regularized base classifiers both achieved
classification accuracy around 94% while the ensemble
that uses tree classifier only achieved around 86%
accuracy.

Across all the datasets, ensemble using L1-regularized
logistic regression is consistently the leading performer.
With 9Tumor dataset, it reaches around 80% accurate,
with the ensemble using SVM second at 75% and the
ensemble using classification tree last at only 64%. With
BrainTumor2 dataset, it achieves an accuracy of 87%
while the ensemble using classification tree achieves
78%. The ensemble using SVM performed poorly and
achieved only around 50%.

The results suggest that using a flexible classifier as
base classifier may not lead to a better ensemble in many
cases. The performance of the ensemble using tree
classifier is systematically lower than that of the linear
classifiers with regularization. The simple decision
boundary employed by the linear classifier does not
prevent it from achieving better classification accuracy.
Hence the complexity (flexibility) of the base classifier
may not be a main concern in designing an ensemble.
This answers our first investigation question.

3.3 Effect of Regularization

L1 regularization is often used to construct
parsimonious models. By employing the L1 regularization
term, the training process (the optimization) removes
redundant genes and thus leads to a model that uses fewer
genes in classification. In fact, L1-regularized logistic
regression has been proposed as a technique for gene
selection in classification of gene expression data [22]. It
is natural to suspect that the performance advantage
displayed by the base classifiers with L1 regularization is
due to the possibility that they conducted further gene
selection (in an implicit fashion) on the subset of genes
involved in the construction of that base classifier.
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Figure 3-1 Classification Accuracy of the Ensembles Using Different Types of Base Classifiers

To determine whether this is the case, we examined
the parameters (coefficients) of the trained base
classifiers. If implicit feature selection happened, some of
the coefficients would be zero, effectively cancel out the
influence of the corresponding genes. To our surprise, the
best performing trained base classifiers all have parameter
vectors without zero entry. That means all the genes (in
the random subset on which the classifier is based on) are
included in the model. They all affect the decision of the
base classifiers, although with different strength
according to the magnitude of the corresponding
coefficients. We further manually varied the hyper
parameter (A) of the Ll-regularized logistic regression
base classifier. Lowering A increases regularization and
the optimization starts to push the coefficients that
correspond to some of the (weakly) correlated genes to
zero. This effectively removes them from the model.
However, we observed that doing so reduces the
classification accuracy of the ensemble, even when only a
few coefficients are zero (a few genes are removed from
the model).

This result suggests that it is not the implicit gene
selection but rather the small magnitude of the
coefficients caused by the regularization that contributes
to the better performance of the Ll-regularized base
classifier. It answers the second question in our
investigation. Regularization can lead to better base
classifiers and should be an important direction to explore
when designing a good ensemble.

Since both L1 and L2 regularizations generate
classifiers with small-magnitude coefficients, we further
investigate which type of regularization gives the best
performance. From the results presented in Figure 3-1,
ensemble based on Ll-regularized logistic regression
performs better than that based on SVM. However, we
notice that L1-regularized logistic regression and SVM
differ not only on the type of regularization but also on
the loss function (the first term in Eq. 2.1 and the first

term in Eq. 2.3). To rule out the possibility that the
difference in performance is caused by the different loss
functions, we constructed another ensemble that uses L2-
regularized logistic regression as base classifier. (It is the
same as the Ll-regularized logistic regression classifier
except that the regularization term, i.e., the second term in
Eq. 2.3 becomes ¥, |[w.|l2 .) The performance of this
ensemble is very close (almost identical) to that of the
ensemble using SVM. It also displayed very poor
performance with the dataset BrainTumor?2.

This suggests it is L1-regularization that contributes to
a better performance. L2-regularization helps but not as
well as Ll-regularization. In a few cases, L2-
regularization may harm classification accuracy.

78 1 0 0 0 8 0 0 3
0 60 0 10 0 0 0 0 0
5 12 | 47 1 0 0 5 0 10
2 10 | 10 | 38 0 0 0 0 0
0 0 0 0 60 0 0 0 0
10 0 0 0 0 70 0 0 0
8 0 0 0 0 0 70 0 2
10 | 10 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 58

Table 3-2 Confusion Matrix of 9Tumors Using L1LogReg

All datasets used in our experiments except the
prostate contain multiple classes. Table 3-2 shows the
confusion matrix for the 9Tumors dataset using L1logReg
as the base classifier. The table rows represent prediction
and columns represent true label. Because 10 rounds of
cross validation are performed, the total number of tests is
600 for 60 samples. The classification accuracy is of
similar level across different classes except class 8 which
is always classified wrong. This is expected as there are



only two examples from that class and they are most
likely missed in the training set in cross validation.

4 Conclusions

In this paper, we consider the ensemble approach for
classification of gene expression data. We investigated
how different types of base classifier can affect the
classification accuracy of the ensemble. We focused on
the flexibility of a classifier and the classifiers constructed
utilizing regularizations. 10-fold cross validation was
used to evaluate the classification performance of the
ensembles employing different types of base classifiers.
The results suggest that to design a good ensemble,
classifier complexity is not a main concern but
regularization techniques are worth exploring. In
particular, base classifiers with Ll-regularization may
lead to an ensemble of better classification performance.

We limited our consideration to ensembles
constructed using random subsets of genes. As a future
work, we plan to investigate the impact of base classifiers
on ensembles using gene subsets constructed by methods
such as genetic algorithm or grouping based on
information theory.
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Inferring Directed-graph Patterns of Gene Responses to Treatments
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Abstract

The analysis of patterns of gene expression to
multiple treatments can be challenging with small
sample sizes, because certain responses cannot be sta-
tistically ascertained. When response patterns are rep-
resented as directed graphs, however, additional infor-
mation about true response patterns might be inferred.
We exploited the relationship between sample size and
a graph property known as contractibility, and used
synthetic replicates to make inference about patterns
of gene response. With microarray data from rats’
liver cells, we showed that this approach uncovered
subtle interactions in response patterns and resulted
in more and better functionally enriched gene clusters.

Keywords: gene expression response patterns,
sample size, directed graph.

1 Introduction

Gene expression data allow scientists measure
how genes respond to different treatments or environ-
mental conditions. Many studies have focused on find-
ing out how genes of interest respond comparatively
to multiple treatments or conditions. In these stud-
ies, scientists have argued that multiple samples must
be gathered to ascertain patterns of response. Due to
biological variation of gene response, sufficient sample
size is necessary regardless of the underlying technol-
ogy used to measure gene expression; for instance, mi-
croarray [6] or RNA-seq [2]. Typically, a sample size
is calculated for all genes. For example, Lin et al [7]
calculated a sample size so that a given proportion of
genes are significantly expressed with 95% probability.

What can we infer about possible true response
patterns from those that are observed with a small
number of samples? The answer to this question might
depend on how such patterns are represented. One
can simply represent each gene's expression as a vec-
tor of real numbers. While this representation is good
for such analysis as clustering, it does not seem re-
veal much information about how accurate observed
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response patterns are. In a number of studies, re-
sponse patterns to multiple treatments are represented
as ternary digits. This representation permits annota-
tion of gene lists [10, 11] and prediction of likelihood
of observed patterns [5]. Phan et al. [9] introduced
directed-graph representation, with which patterns re-
sulted from a lack of samples might be able to sep-
arated from the rest. In these approaches, response
patterns obtained from multiple comparisons are com-
pletely based on observed data; no attempt is made to
infer about patterns that are not observed.

In this paper, we exploited the relationship sam-
ple size and a graph property known as “contractibil-
ity”, and used synthetic replicates to make inference
about response patterns when they are represented as
directed graphs. We validated prediction accuracy un-
der 4 popular models of gene expression distributions,
applied this approach to analyze gene expression in
rats’ liver cells responding to chemo-preventive chem-
icals, and finally, showed that predicted patterns can
uncover more and better functionally enriched gene
clusters that would be otherwise missed.

2 Previous Work

In the context of multiple-treatment comparative
gene-expression studies, Phan et al. [9] suggested the
use of “response graphs” to represent the patterns of
response of genes to treatments. Suppose there are
K treatments, and each treatment group has R repli-
cates. A response pattern of significantly differentially
expressed gene is determined based on how it responds
to all (',f ) treatment pairs. For treatment pair A and
B, a statistical procedures such as the Wilcoxon rank-
sum test will produce 3 possible outcomes:

A>B: the gene responds more significantly to A than to
B if the pairwise test Hy : pa = pup is rejected in
favor of Hy : pa # pp, with pa > up.

A<B: the gene responds more significantly to B than to
A if the pairwise test Hy : pa = up is rejected in
favor of Hy : ps # pup, with pa < ugp.



A~B: If H, is accepted because either the gene responds
identically to A and B, or the number of replicates
is insufficient to resolve its true response.

Based no the outcomes of gene g responding to
(%) treatment pairs, the response graph G of g is de-
fined as follows. Vertices of G represent the K treat-
ment groups. Edges of G represent the outcomes of
how g responds to all treatment pairs. Specifically,
the edge A — B represents the outcome A > B; the
edge B — A represents the outcome A < B; and hav-
ing no edges between A and B represents the outcome
A ~ B. It can be seen that because of the consistency
of comparison tests, it is not possible to have both
edges A — B and B — A. Similarly, G has no cycles.

We call G “contractible” if its non-adjacent ver-
tices are equivalent, having identical in-neighbors and
out-neighbors. Formally, G is contractible if for
all non-adjacent vertices v and v, n(u) = n(v) and
N(u) = N(v), where n(a) = {w : (w,a) € Eg}, and
N(a) = {w : (a,w) € Eg}. This implies that non-
adjacent vertices in a contractible graph are equivalent
and can be merged to form a complete graph.

Figure 1 shows examples of contractible and non-
contractible graphs.

In [9], we observed that with sufficiently many
replicates, the linear order of response of the gene to
all treatments are detectable. And this linear order
is reflected by the topological order of vertices in the
contracted, directed, acyclic, complete graph of a con-
tractible response graph. This relationship between
sample size and the contractibility of response graphs
can be summarized as follows:

Proposition 2.1. As a gene is given more replicates,
its response graph is more likely contractible.

This observation suggests that non-contractible
response patterns are unlikely true response patterns.
In this paper, we exploit this relationship to infer
true response patterns of genes, by augmenting non-
contractible patterns with additional synthetical repli-
cates just enough to make them contractible. Syn-
thetic replicates are carefully generated and made sure
to fit the distribution of real replicates.

3 Method

A quick analysis of the non-contractible graph in
Figure 1a shows that B being non-distinguishable from
both A and C and the fact that A > C are probably
due to the lack of samples; as was concluded in a previ-
ous work Phan et al. [9]. Further, we see that response
graphs (b), (c), (d), (e) and (f) are all possible con-
tractible graphs that contain (a) as subgraph. Thus,

A B A B {AB) A A A B A
+ + i\ ' / 4
C c C B ¢ B B\ A\[cC
c ¢ | B

LW @

Figure 1: (a) Non-contractible response graph of a hy-
pothetical gene with hypothetical 3 treatments. (b-f)
five contractible response graphs.

one might conclude that the true response must be one
of these. But which one?

Given a non-contractible graph G, we gener-
ate “synthetic” data for non-adjacent vertices (cor-
responding to A ~ B outcomes) until a contractible
super-graph of G emerges. Synthetic data generation
is a probabilistic process, so this step is done multiple
times. Consequently, several super-graphs of G can be
realized. The most dominant (i.e. most frequent) su-
pergraphs are declared most likely candidates of true
responses of the gene. To generate synthetic data, we
rely on recent literatures that shed light on possible
underlying distributions of gene expression. Bengts-
son et al. [1] showed that certain mouse genes were
log normally distributed. Hebenstreit et al. [3] studied
RNA-seq data and found that the expression levels of
a majority of genes in metazoan cells followed a normal
distribution or a combination of normal distributions.
Based on these works, we used normal distributions
as the underlying distributions of gene expressions.
Additionally, we used a goodness-of-fit test (2-sample
Kolmogorov-Smirnov test) to maintain that synthetic
and experimental data likely come from the same dis-
tributions. We will show that this simple model can
produce accurate predictions.

This probabilistic strategy of inferring true re-
sponses of genes to multiple treatments is described in
Algorithm 1 .

If a response graph is already contractible, no in-
ference is made. For a non-contractible response pat-
tern, let P be the multi-set of all contractible graphs
generated by Algorithm 2 as predictions of true re-
sponses of a gene g. These graphs contain the origi-
nal non-contractible response graph (without synthetic
replicates) of gene g as subgraph. Let f; be the fre-
quency of each P, € P , and p; = T%l be the probabil-
ity of observing P;. The entropy of P, H(P) given
as ) pep—pilogypi.  H(P) varies between 0 and
log, |[P|. When H(P) = 0, P is most certain, con-
sisting of one unique pattern. When H(P) = log, |P|,
P are uniformly random. Higher entropy implies less
certainty in prediction, and vice versa.



