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Preface

This book is intended primarily for students. It is
designed to describe the present state of Population
Ecology in terms which can be readily understood by
undergraduates with little or no prior knowledge of the
subject. We have, however, presented our view, rather
than some definitive view of the subject, and, con-
sequently, we have tried to provide sufficient infor-
mation for everybody (student and expert alike) to
disagree with us wherever they think fit.

Population Ecology is, to us, the study of the sizes
(and to a lesser extent the distributions) of plant and
animal populations, and of the processes — particularly
the biological processes — which determine these sizes.
As such, it must inevitably be a numerical and quanti-
tative subject. Nevertheless, we have avoided complex
mathematics, and we have, wherever possible, relegated
the mathematical aspects of a topic to the final parts of
the section in which that topic is examined. This will, we
hope, make Population Ecology more generally ac-
cessible, and more palatable. But this is not to say that
the mathematics have been played down. Rather, we
have tried to play up the importance of real data from
the real world: it is these, and not some mathematical
abstraction, which must always be the major and ul-
timate concern of the population ecologist.

Developing the subject in this way, however, empha-
sizes that mathematical models do have an essential role
to play. Time and again they crystallize our under-
standing of a topic, or actually tell us more about the
real world than we can learn directly from the real
world itself. Nature may be the ultimate concern of
Population Ecology, but mathematical models, labo-
ratory experiments and field experiments and obser-
vations can all help to further our understanding.

We have also tried to establish the point implied by
the subtitle: that Population Ecology is a unified study
of animals and plants. We are, of course, aware of the
differences between the two; and aware, too, of the view
pioneered by Professor J. L. Harper and his school, that
the most important distinction is between simple, unit-
ary organisms (most animals), and ramified organisms

composed of sub-units (a few animals and most plants).
We feel, however, that plant and animal populations
have had their own, independent ecologists for too long,
and that, since the same fundamental principles apply to
both, there is most to be gained at present from a
concentration on similarities rather than differences.

" The book is set out in three parts. The first starts
from the simplest first principles and examines the
dynamics and interactions occurring within single-
species populations. The second part, occupying approx-
imately half of the book, is concerned with interspecific
interactions: interspecific competition and predation.
‘Predation’, however, is defined very broadly, and in-
cludes the plant-herbivore, host-parasite, host—
parasitoid and prey-predator interactions. The third
part of the book synthesizes and expands upon the
topics from the preceding chapters, and does so at three
levels: individual life-history ‘strategies’, the regulation
and determination of population size, and the impor-
tance of intra- and interpopulation interactions in de-
termining community structure.

A number of people read all or most of this book in
manuscript, and made generous and helpful suggestions,
many of which we have now incorporated. We are
deeply grateful to Professor Tony Bradshaw, Professor
J. L. Harper, Professor Michael Hassell, Dr Richard
Law, Professor Geoffrey Sagar, Dr Bryan Shorrocks, Dr
David Thompson and, most especially, Dr John
Lawton.

We also thank Mrs Barbara Cotgreave for drawing
the figures, Mr Brian Lewis for his photography and
Anita Callaghan, Susan Scott and Miss D. 9. Paterson
for typing the manuscript.

Population Ecology has come a long way since its
inception, and the rate of progress has never been faster
than at present. Nevertheless, there are few, if any,
populations for which we can claim to fully comprehend
the underlying causes of abundance. Much remains to be
understood, and a great deal more remains to be done.

Michael Begon
Martin Mortimer

vii






PART 1

SINGLE-SPECIES

POPULATIONS

Chapter 1

1.1 - Introduction

Few would disagree with the proposition that nature is
immensely complex. However, if we wish to understand
this complexity, we will be well advised to abstract
relatively simple facets from nature and examine these
first. Species—habitat interrelations could be considered,
or interactions between species within communities; but
before they are, we must examine the basic components:
single-species populations.

Even here there is a wealth of general questions:
‘What causes species to be common or rare?, ‘What
underlies the fluctuations in their numbers?, ‘Why do
populations of the same species vary in their size and
age-structure?’, and so on. The dynamics of single-
species populations, therefore, must be described in a
way that allows such questions to be approached; for it
is only when actual populations are encapsulated by the
appropriate description that we can go on to consider
underlying causes. This first chapter, then, is concerned
with description, and with abstracting from populations
the common properties that link them together.

1.2 Population processes

Although studies of animal and plant populations have
developed quite separately, these two life forms have
much in common when examined from a demographic
viewpoint. At the simplest level, plants are born from
seeds just as birds are born from eggs; and old animals
exhibit signs of senility just as old oak trees bear dead
branches. Moreover, if we were to catalogue the ages of
every dandelion plant and every vole living in a field, we
would probably find a range of ages in each; and, as
time passed, individuals would either die, or survive to
reach the next age-group; and in some age-groups, at
certain times, individuals would produce offspring of
their own. From the outset, therefore, it would seem
sensible to suggest that, even though life forms and

Describing Populations

stages of development may differ substantially amongst
species, certain basic population processes are common
to all of them.

We can start considering these population processes
by imagining a study of the numbers of voles inhabiting
a meadow. Let us suppose that the vole numbers in-
crease. We know that there has either been an influx of
voles from adjoining meadows, or young voles have
been born, or both of these events hqve occurred. We
have, therefore, pin-pointed two very basic processes
which affect the size of a population: immigration and
birth. If, on the other hand, vole numbers decline, then
our explanation would be that voles must have either
died, or simply left the ‘meadow, or both. These pro-
cesses, which reduce population numbers, are death and
emigration.

Of course, there is no reason to suggest that all four
processes are not occurring simultaneously in the popu-
lation. If the population declines, then the reason is
simply that death and emigration together have out-
weighed birth and immigration, and vice versa if the
population increases. We can certainly say that birth,
death, immigration and emigration are the four fundam-
ental demographic parameters in any study of popu-
lation dynamics. Moreover, they can be combined in a
simple algebraic equation describing the change in num-
bers in a population between two points in time:

N,,,=N,+B—D+I—E (1.1)

where N, is the population size (number of individuals)
at time ¢, N,,, is the population size one time-period
later, at time t+ 1, B is the number of new individuals
born between t and t+ 1, D is the number of individuals
which die between t and t+ 1, and I and E, respectively,
are the numbers of immigrants and emigrants during
the same period of time.

If the population is so large that our study cannot
encompass the whole of it, then this equation must be
constructed in terms of densities rather than absolute
numbers. Thus, samples are taken, and N,, for instance,

3



4 PART L SINGLE-SPECIES POPULATIONS

becomes ‘the number of plants per square metre at time
t" or ‘the number of insects per leaf’. Nevertheless,
equation (1.1) indicates that, at its simplest, the task of
the demographer is to measure these four parameters
and account for their values — yet the translation of
this into practice is rarely straightforward. Almost all
species pass through a number of stages in the life cycle.
Insects metamorphose from eggs to larvae to adults,
and some have a pupal stage as well; plants pass from
seeds to seedlings and then to photosynthesizing adult
plants, and so on. In all such cases the different stages
must be studied individually. Also, in reality, the four
‘basic’ parameters are themselves often compounded
from several other component processes. Equation (1.1),
therefore, cannot be considered as anything more than a
basis upon which more realistic descriptions can be
built.

1.3 The diagrammatic life-table

1.3.1 General form

The description we require is one which retains the
generality of equation (1.1), but can also reflect the
complexities of most actual populations. One such
description is the diagrammatic life-table (Sagar &
Mortimer 1976), which is applied to an idealized higher
plant in Fig. 1.1. The numbers at the start of each of the
stages — seeds, seedlings and adults — are given in the
square boxes. Thus, the N, adults alive at time ¢+ 1
are derived from two sources. Some are the survivors of
the N, adults alive at time t. Their probability of
survival (or, equivalently, the proportion of them that
survive) is placed inside a triangle (or arrow) in Fig. 1.1,
and denoted by p. So, for instance, if N, is 100 and p, the
survival-rate, is 0.9, then there are 100x0.9 or 90
survivors contributing to N,,, at time t+1. (10 in-
dividuals have died; the mortality-rate (1 — p) between ¢
and t+1 is clearly 0.1.) '
The other source of the N, , adults is ‘birth’, which in
the present case can be viewed as a multi-stage process
involving seed production, seed germination and the
growth and survival of seedlings. The average number
of seeds produced per adult — the average fecundity of

ADULTS Time:t
N
SEEDS S
. F 0
B
R
|
R g :;»7 v
|
T
v
H
SEEDLINGS A
/V'.F. g. L
ADULTS e fa1
ime: 7+
Mery

Fig. 1.1. A diagrammatic life-table for an idealized higher plant. F:
number of seeds per plant; g: chance of a seed germinating (0<g<1);
e: chance of a seedling establishing itself as an adult (0<e<1); p:
chance of an adult surviving (0<p<1).

the plant population — is denoted by F in Fig. 1.1 and
placed in a diamond. The total number of seeds pro-
duced is, therefore, N,x F. The proportion of these
seeds that actually germinate on average is denoted by
g, which, being essentially a survival-rate, is placed in an
arrow in Fig. 1.1. Multiplying N, x F by g gives us the
number of seedlings which germinate successfully. The
final part of the process is the physiological establish-
ment of seedlings as independently photosynthesizing
adults. The probability of surviving this very risky phase
of plant growth is denoted by e (once again in an
arrow), and the total number of ‘births’ is, therefore,
N,x F xgxe. The number in the population at time
t+1 is then the sum of this and the number of surviving
adults, N, x p.

We can now substitute the terms from the life-table
into our basic equation of population growth (equation
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1.1) as follows:

Surviving
rm——
N, 1=N,—N(1-p) + N xFxgxe. (1.2)
\_‘\,—"
Death Birth

There are several points to note about this equation.
The first is that both here and in Fig. 1.1 immigration
and emigration have, for simplicity, been ignored, and
our description of how a plant population may change
in size is essentially incomplete. The second is that
‘death’ has been calculated as the product of N, and the
mortality-rate (1 —p) — survival and mortality are op-
posite sides of the same coin. The third point is that
birth is quite clearly a complex product of ‘birth-proper’
and subsequent survival. This is frequently the case:
even human ‘birth’-rates are the product of the rate at
which fertilized eggs implant in the womb and the rate
of pre-natal survival.

132 The common field grasshopper, an annual
species

In practice, careful and meticulous field-work is neces-
sary to build a diagrammatic life-table of the type
illustrated in Fig. 1.1. Reliable estimates of the tran-
sition probabilities (p, g and e in Fig. 1.1) are required,
as well as measurements of the fecundity of adults. Such
data for the common field grasshopper, Chorthippus
brunneus, are illustrated in Fig. 1.2. These were obtained
by a combination of field samples and back-up labo-
ratory observations on a population near Ascot in
Berkshire (Richards & Waloff 1954). The population
was isolated so that immigration and emigration could
be ignored.

The first point to note about Fig. 1.2 is that no adults
survive from one year to the next (p=0). Ch. brunneus
is, therefore, an ‘annual’ species; each generation lasts
for just one year, and generations are discrete, i.e. they
do not overlap. It is also clear that the ‘birth’ of adults is
a complex process involving at least six stages. The first
stage is the laying of egg-pods in the soil by adult
females. On average, each female laid 7.3 pods, each
containing 11 eggs. F is, therefore, 80.3. These eggs
remain dormant over winter, and by early summer only
0.079 of them had survived to hatch into first-instar

ADULTS

2 & | 1947
25 28

;| INsTARI

v

INSTAR II

—<¢H

T <4 X2

~— P» <

=
-
Py
N

INSTAR I
8-68

<

INSTAR IV
6:6

ADULTS
? & | 19u8

2.9 29

Fig. 1.2. Diagrammatic life-table of the field grasshopper, Chorthippus
brunneus. (Population sizes are per 10 m?; data from Richards &
Waloff 1954.)

nymphs. Subsequently the transition probabilities be-
tween instars were fairly constant, taking a remorseless
toll on the surviving population; less than a third of the
first-instar nymphs survived to be ‘born’ into the adult
population. Despite their apparently high fecundity,
therefore, the adults of 1947 did little more than replace
themselves with newly born adults in the following year.

Ch. brunneus’ diagrammatic life-table is illustrated in
a simplified form in Fig. 1.3(a). This life-table is approp-
riate for all species which breed at a discrete period in
their life cycle, and whose generations do not overlap. If
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(a)

ADULTS

()

~

ADULTS

Fig. 1.3. Diagrammatic life-tables for species with discrete breeding
seasons. (a) Generations do not overlap. (b) Generations overlap.
(Birth processes are simplified.)

the time between t, and t, is one year, the life history is
referred to as annual.

133

An annual life history is only one of a number of
possible patterns. If we consider species that live for two
years rather than one, reproducing only in the final
year, then we have a life history that involves breeding
at one discrete time in the life cycle, but in which
generations of adults may well overlap; this is illustrated
in Fig. 1.3(b). If the time periods are years, then this life
cycle is referred to as ‘biennial’. During any one sum-
mer, the population contains both young adults which
will not reproduce until the following year, and mature,
reproducing adults.

Ragwort, Senecio jacobaea, is a biennial plant with a
life ‘cycle in which seeds germinate principally in the
autumn. Then, during the next year, young plants form
a rosette of leaves. In the second year a flowering stem is
formed. A diagrammatic life-table for S. jacobaea is

Ragwort, a biennial

(b}

SINGLE-SPECIES POPULATIONS

PRE -
ADULTS t
ADULTS
PRE - t
ADULTS ADULTS
PRE- ¢,
ADULTS ADULTS

shown in Fig. 1.4, in whith the birth-process has been
expanded to include some extra stages which are speci-
fic to plants. The data come from measurements made
on a population living in sand dune environments in the
Netherlands (van der Meijden 1971). Of the 5040 seeds
that are produced, 62% fall on to the ground; the other
389 are dispersed by the wind to other areas. By the
sar;e token there is quite a high chance that immigrants
enter this population. This necessitates a further modifi-
cation of our life-table, indicated in Fig. 1.4 by the
inclusion of invading seeds, which may contribute either
to the seed banks or to the incoming seed ‘rain’.
Having arrived on the ground, various potential fates
await ragwort seeds. They lie on the surface of the sand
in the ‘surface seed bank’, where they may germinate, be
eaten or just die. Alternatively, wind or insects, acting as
migratory agents, may transport them to neighbouring
areas; or they may become buried. The detailed fates of
ragwort seeds in sand dune environments are not fully
known, but only 11.4% stay in the surface seed bank;
and of the 3124 seeds that rain on to the soil only 40
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ADULTS
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Fig. 1.4. Diagrammatic life-table of the biennial ragwort, Senecio
jacobaea. (Population sizes are per 4 m?; data from van der Meijden
1971.)

actually germinate successfully. However, seedlings can
arise from an additional source: the buried seed bank.
We do not know how many seeds are buried in the sand
profile, but for many plant species, especially weeds,
the numbers of buried seeds can be very hfgh (up to
10000 m~2), and a proportion of each season’s seed
crop does become buried. To indicate that this is a birth

route we have added to the ‘seedling’ and ‘established
plant’ components a fraction of the buried seed bank,
denoted by S. Finally, the transition from seedlings to
young, established, photosynthetically independent
adults in sand dune environments is also an exceedingly
risky phase for ragwort: only 1.79 of the seedlings
actually become established.

The life-table in Fig. 1.4, therefore, illustrates the
importance of additional seed sources to the 4 m? area,
since from t, to t, the original ragwort density of 1
becomes reduced to 0.69. Thus, to keep the number of
young adults at ¢; up to exactly | we might argue that
there are 155 seeds in the buried bank which germinate
(since if 0.69+0.002S=1, then S=155). Alternatively,
some of these 155 might enter the ‘birth process’ as
inmigrants; and if we recall that 38%, of the 5040 seeds
were dispersed, we can see that there are ample numbers
to rely upon. To complete this life-table, however, we
should note that the chance of a young adult surviving
to become a mature one producing seed is only
0.25. To ensure that the population size at ¢, is still 1,
therefore, we will have to imagine a further input of
seeds into the birth process.

Such data as these emphasize the extreme severity of
the sand dune habitat to plant life, and the considerable
mobility of seeds in the life cycle of ragwort: individual
seeds may travel at least 15 m. Since sand dunes, by
their very nature, offer shifting and temporarily suitable
habitats for ragwort, we can infer that seed movement
by dispersal on or above the sand is a very necessary
feature in the life history of this plant.

1.34 More complex life cycles

Overlapping generations are not confined to biennials.
Consider the population of great tits (Parus major) near
Oxford studied by Perrins (1965) and illustrated in Fig.
1.5. Adult birds build their nests and lay eggs in the
early summer, but of these eggs only a proportion (0.84
in this case) survive to hatch as nestlings. These nest-
lings are themselves subject to many dangers, and by the
late summer only 71% of them survive to fledge —
leaving the nest and fending for themselves. Of these
fledglings, only a small proportion live through the
winter to become breeding adults. However, a rather
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ADULTS
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Fig. 1.5. Diagrammatic life-table of the perennial great tit, Parus
major. (Population sizes are per hectare; data from Perrins 1965.)

larger proportion of the previous generation’s adults
have also survived. The population of breeding adults,
therefore, consists of individuals of various ages, from
one to five or more years old. As Fig. 1.5 shows, this
situation is readily described by a variant of our diag-
rammatic life-table very similar to Fig. 1.1. We are
dealing with a population in which breeding occurs at
discrete time periods, but in which the individuals are
potentially long-lived so that many generations overlap.

We have assumed with our great tits, however, that
adults of different ages are equivalent and may be

treated as equal members of a common pool. Yet there
will be many instances in which their demographic
characteristics will be ‘age-dependent’ or ‘age-specific’. In
such cases, a diagrammatic life-table of the type shown in
Fig. 1.6 may be more appropriate. In Fig. 1.6, the
population at any one time consists of individuals in a
range of age-classes: a, individuals are in the youngest age-
class, a, individuals in the next oldest, and so on. With the
passage of oneunit of time a proportion of theindividualsin
one age group survive to become individuals in the next
oldest age group. Thus, p,, is the proportion of the a,
individuals surviving to become a, individuals one time-

\ \ \\ \
\ \ AN \L -
g | & | 2| 03 a9 | to
« TS TS TNT "°°°T
G| o] %] 9 a, t
< I~ T~ T+ 1 it oy
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© / general life-table
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Fig. 1.6. A diagrammatic life-table for any species that breeds con-
tinuously with overlapping generations. a,, a,—a, represent age-
groups of individuals, a, being the oldest group. p;; is an age-specific
probability of survival, where, for example, p,, is the probability of
individuals in a, at one time surviving to reach a, by the next time
period (0= p;;<1). The inset shows a subset of the general life-table.
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unit later, p,, is the proportion of the a; individuals
surviving to become a, individuals, and so on (though in
practice these p-values will, of course, vary with the
changing circumstances of the population). Fig. 1.6 also
showsthateachagegrouphasthe potentialtocontributeto
the youngest age-class via the birth process. For simplicity,
birth from all age groups has been fused together; in reality,
fecundity, like survival, would vary from age-class to age-
class. Nevertheless, despite this increased sophistication,
inspection of the life-table in Fig. 1.6 reveals that it is built
up of units whicharelittle more than the diagrammatic life-
table with which we are already familiar. One such unit is
illustrated in the inset in Fig. 1.6.

The implication in Fig. 1.6 is that breeding occurs at
discrete periods, even though generations overlap and
there are many agc-classes each with their own birth-
and survival-rate. In many species, however, birth (and
death) occur continuously within a population. Fig. 1.6
is still appropriate in such cases, but time must be split
arbitrarily into intervals, and the various terms take on
slightly different meanings. Suppose, for instance, that
we consider the numbers in a population at monthly
intervals. At t,, a, is the total number of individuals
between two and three months old. One month later (at
t1). p23 of these will survive to become the a; individuals
that are between three and four months old. Thus, even
though birth and death are occurring continuously, they
are considered ‘one month at a time’.

1.4 Conventional life-tables

1.4.1 T he cohort life-table

The most reliable method of determining age-specific
mortality and fecundity for a continuously breeding
population, or simply one in which generations are
overlapping, is to follow the fate of a group of in-
dividuals, all born during the same time interval. Such a
group is called a cohort. The process is essentially a
jotrney from the top left-hand corner of Fig. 1.6 to its
bottom right-hand corner, and, in many respects, it is
similar to following the fate of an annual species through-
out its yearly cycle. The difference in this case is that
each individual has to be recognized and distinguished

from those individuals belonging to other cohorts which
are in the population at the same time. The situation is
described diagrammatically in Fig. 1.7 in which in-
dividuals are represented by solid lines, ageing with
time, and eventually dying (a ‘spot’ in Fig. 1.7). The
cohort of four individuals (born at ¢,,) is observed again
at t, (when there are two survivors), at t, (one survivor),
and at t5 (no survivors).

Plants are ideal subjects for such study, since they are
generally sessile and can be tagged or mapped, enabling
the fates of individuals to be precisely recorded and
their reproductive output measured. Law (1975), for
instance, followed the fate of a cohort of the annual
meadow grass, Poa annua, from initial establishment to
the ultimate death of the last individual. Recording the
number alive at successive time periods and the number
of offspring (seeds) produced per plant, he was able to
compile a table of data showing survivorship and fecun-
dity (Table 1.1). The first (left-hand) column gives the
age at the beginning of each time interval. Thereafter,
only the second and last columns (a, and B,) actually
contain field data. All other columns are derived from
the a, column. We can see that this (conventional) life-
table contains essentially the same information as the
diagrammatic life-tables previously described.

The a, column summarizes the raw data collected in
the field by mapping the positions of 843 Poa annua
plants that arose from naturally sown seeds in a number
of metre-square quadrats. From this raw data ‘[
values are calculated, by converting the numbers obser-
ved at the start of each time interval to the equivalent
number that would have occurred had the starting
density of the cohort been 1000; e.g.
[;=316 x 1000/843 =375. The value of this procedure is
that / -values can be compared between populations, or
between species, since they do not depend on the actual
number of individuals considered in each study. In
other words, an a, value of 843 is peculiar to this set of
observations, whereas all studies have an [, value of
1000.

To consider mortality more explicitly, the standar-
dized numbers dying in each time interval (d,) must be
computed, being simply the difference between [, and
[esy: eg dy=857T—625=232. q, — the age-specific
mortality-rate — has also been calculated. This relates
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Cohort
Segment

Fig. 1.7. A population portrayed as a set of
diagonal lines, each line representing the life
‘track’ of an individual. As time progresses,
each individual ages and eventually dies.
Three individuals are born prior to t,, four
during t,, and three during ¢,. To construct a
‘fixed cohort’ life-table, a ‘searchlight’ is direc-
ted onto the cohort of individuals born dur-
ing 1, and the subsequent development of the
cohort is monitored. Two of thg four indi-
viduals have survived to the begirning of ¢,;
only one of these is alive at the beginning of
t,; and none survives to the start of 1,. To
construct a ‘static’ life-table, the searchlight is
directed onto the whole population during a
single segment of time (t,). The ages of the
seven individuals alive at some time during (,
may be taken as an indication of the age-
specific survival-rates if we assume that the

rates of birth and survival are constant. (After fo f f f
Skellam 1972,) Time
Table 1.1 A cohort life-table for Poa annua. (Adapted from Law 1975.)
Standardized Average num-
Age Number number surviv- Standardized ber of seeds
(in three- observed alive ing at the number dying log,oa,-  per individ-
month at each start of age between x Mortality- log,oa,, ual aged
periods) quarter year interval x and x+1 rate X
X ax [ dy 4 log, oa, log ol ky B,
0 843 1000 143 0.143 2.926 3.000 0.067 0
1 722 857 232 0.271 2.859 2933 0.137 300
2 527 625 250 ) 0.400 2722 2.796 0.222 620
3 316 375 204 0.544 2.500 2.574 0.342 430
4 144 171 107 0.626 2.158 2232 0.426 210
S 54 64 46.2 0.722 1.732 1.806 0.556 60
6 15 17.8 14.24 0.800 1.176 1.250 0.699 30
7 3 3.56 3.56 1.000 0.477 0.551 10
8 0 0 - -
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d, to [, in proportional terms, so that, for instance, g, —
the proportion of the six-month-old individuals that die
in the subsequent three-month period — is 250/625 or
0.4. g, can also be thought of as the ‘chance of death’,
and is equivalent to (1—p,), where ‘p’ refers to the
survival-probability considered previously.

The advantage of the d.-values is that they can be
summed over a period time: the number dying in the

first. nine months is dy+d; +d, (=625). The disadvan-

tage is that the individual values give no real idea of the
intensity or importance of mortality at a particular time.
This is because the d,-values are larger the more in-
dividuals there are to die. g.-values, on the other hand,
are a good measure of the intensity of mortality. Thus,
in the present example, it is clear from the g, column
that the mortality-rate rose consistently with increasing
age; this is not clear from the d, column. The g,-values,
however, have the disadvantage of not being liable to
summation: go+4g, +g, does not give us the overall
mortality-rate for the first nine months. These advan-
tages are combined, however, in the penultimate column
of Table 1.1 in which ‘k’-values (Haldane 1949, Varley &
Gradwell 1970) are plotted. k, is defined, simply, as
log,oa,—10g0a,+, (or, equivalently, log,oa,/a,+ ),
and is sometimes referred to as ‘killing-power’. Like the
q.’s, k.’s reflect the intensity or rate of mortality, and, in
the present case, they increase consistently with age.
But, unlike the g,’s, summing the k./s is a meaningful

(a)
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Average number of seeds per individual
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Age (months)

Fig. 1.8. Age-specific fecundity (B,) for the annual meadow grass,
Poa annua. (Data from Law 1975.)

procedure. Thus the killing-power or k-value of the first
nine months is 0.067+0.137+0.222=0.426, which is
also the value of log,,a,—log;,a;. Note, furthermore,
that the k,-values can be computed from the [ .-values as
well as the a.-values; and that, like the [.’s, the ks are
standardized and are, therefore, appropriate for com-
paring quite separate studies. k-values will be of con-
siderable use to us in later chapters.
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Fig. 1.9. (a) Age-spegific survivorship
(log,, L,), and (b) age-specific mortality-rates
(q,) and killing-powers (k,) for the annual o | | L o 1 |
meadow grass, Poa annua. (Data from Law o] 6 12 18 21 o] 6 12 18 21

1975.)
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The age-specific patterns of fecundity and mortality
have been plotted in Figs. 1.8 and 1.9. Fig. 1.8 indicates
quite clearly an initial sharp rise in fecundity reaching a
peak at six months, followed by a gradual decline until
the death of the last individual after two years. Fig. 1.9
illustrates a single pattern in three different ways. Fig.
1.9(a) is a ‘survivorship curve’ — log,,l, plotted against
age — while Fig. 1.9(b) contains two mortality curves,
g, and k., plotted against age. All show a consistent
rise in the rate of mortality, leading to an increasingly
rapid decline in survivorship. Of the three, Fig. 1.9(a) —
the survivorship curve — probably shows this most
clearly.

The use of logarithms in the survivorship curve de-
serves further comment. Consider, for instance, the halv-
ing of a population over 1 unit of time, in one case from
100 to 50 individuals, and in another case from 10 to 5
individuals. In both cases there has been a reduction by
half, i.e. the rate or probability of death per individual
(usually referred to as the ‘per capita rate’) is the same.
Nevertheless, the slope of an arithmetic survivorship
curve would be —50 in the first case but —5 in the
second. With logarithmic survivorship curves, however,
the slopes in these two, equivalent cases are identical. In
fact, equivalent advantages are gained by the use of k,-
values: being based on logarithms, they, too, allow
recognition of cases in which per capita rates of mor-
tality are the same. Moreover, logarithms also indicate
when per capita rates of increase are identical. ‘Log
numbers’ should therefore be used in preference to
‘numbers’ when numerical change is being plotted.

142 T he static life-table

Unfortunately, it is not always possible to monitor the
dynamics of a population by constructing a ‘fixed co-
hort’ life-table. It is, in fact, rarely possible with natural
populations of animals, since the individuals are often
highly mobile, highly cryptic or both. There is, however,
a rather imperfect alternative, which is also illustrated
diagrammatically in Fig. 1.7. It involves examining the
age structure of the whole population at one particular
time, or, since these things cannot be done instan-
taneously, during one short ‘segment’ of time.

As an example, we can consider the results, reported

by Lowe (1969), of an extensive study of the red deer
(Cervus 2laphus) on the small island of Rhum, Scotland.
Each year from 1957 onwards, Lowe and his co-workers
examined every one of the deer that was shot under the
rigorously controlled conditions of this Nature
Conservancy Council reserve. They also made extensive
searches for the carcasses of deer that had died from
natural causes. Thus, they had access to a large pro-
portion of the deer that died from 1957 onwards. Deer
can be reliably aged by the examination of tooth re-
placement, eruption and wear, and Lowe and his co-
workers carried out such examinations on all of the
dead deer. If, for instance, they examined a six-year-old
deer in 1961, they were able to conclude that, in 1957,
this deer was alive and two years old. Thus, by examin-
ing carcasses, they were able to reconstruct the age
structure of the 1957 population. (Their results did not
represent the total numbers alive, because some car-
casses must have decomposed before they could be
discovered and examined.) Of course, the age structure
of the 1957 population could have been ascertained by
shooting and examining large numbers of deer in 1957,
but, since the ultimate aim of the project was en-
lightened conservation of the deer, this method would
have been somewhat inappropriate.

Lowe’s raw data for red deer hinds are presented in
column two of Table 1.2. As expected, there were many
young deer and rather fewer old deer, but we can treat
these raw data as the basis for a life-table only if we
make a certain set of assumption's. We must assume that
the 59 six-year-old deer alive in 1957 were the survivors
of 78 five-year-old deer alive in 1956, which were them-
selves the survivors of 81 four-year-olds in 1955, and so
on. In other words, we must assume that the numbers of
births and age-specific survivai-rates had remained the
same from year to year, or, equivalently, that the a,
column of Table 1.2 is essentially the same as would
have been obtained if we had followed a single cohort.
Having made this assumption, /., d, and ¢, columns
have been constructed. It is clear from Table 1.2, how-
ever, that our assumption is false. The ‘cohort’ actually
increases in size from years 6 to 7 and 14 to 15, leading
to ‘negative’ deaths and meaningless mortality-rates.
The pitfalls of constructing such ‘static’ life-tables are,
therefore, amply illustrated.



