UML Y5 i) X R i il % A B

UMLGjH iR
Sl IR Fy i

APPLICATIONS WITH UML

B[lll[H
JACOBSON
g RUMBAUGH

DESIGNING CONCURRENT,
DISTRIBUTED, AND REAL-TIME

E:}é&*‘éd:ﬁig

WWW.Sciencep.com - SRR, A——

UML 5 w1 st Rx it A 4

UML 5#179H L0
NAERIZT

Designing Concurrent, Distributed,
and Real-Time Applications with UML

(%) Hassan Gomaa %%

M4 5 % K&

S| A

E: 01-2003-7658 &
m & 8 o

AR UML A5y o0 A USRS RGOT AP RN I E 7 Vg ey g, JUHO I i) b 87T R
HERAH AT A T AR . VR A RS 00 AT LRI E G . AR @R IR
SURA DTN, ARSI SRARIME, ARRSYMRER. M RER AT
FEM AT, F 5.

ANREN FIFT Sk R RA BRI %%,

English reprint copyright©2003 by Science Press and Pearson Education Asia Limited.

Original English language title: Designing Concurrent, Distributed, and Real-Time Applications with UML, 1*
Edition by Hassan Gomaa, Copyright©2000

ISBN 0-201-65793-7

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
GO P ATCHORIRBE Y (ONERE (R . R TR T BRUX R [A v) S E R AT,
A BRI £7 Pearson Education($; 4 & IHAR S DBOLBT hAR % . KRG #E NS,
BB RS B (CIP)EHE

UML 45 H- 17 53 At A R B FE P 1% 3=Designing Concurrént,Distributed,and Real-Time Applications
with UML/ () Hassan Gomaa 4R, —EIA —Ibsi: BogMRit, 2004
CUML L)t o 2 S ol B2 ED A)
ISBN 7-03-012492-8
LU II.G.. HNLEFSRES, UML—BF#i—%3Z V.TP312
HrId Rz A B BT CIP BOB T (2003) % 103055 5

RumiE. BRL/FIERE: 4 2
TP & SAR/TEHME. AFARLFHKITT
4 5 x B o# R
b SR At 164
WR X G 8: 100717
http:// www.sciencep.com

L L DR
FORHIAERAT BB

*
2004 1A% - W JEA: 787X960 1/16
2004 1E 1 FIB - KENR) Endk: 50 3/4
Hig: 1--3 000 FH: 972 000
EMN: 8200 T

(I BN B Il B, 3R 47 3 A 4 R A

=EHE

BEE TN P R ATV AR 5 A RS A4 TR . L HVE e Rk, 42
THENU R T ok B, ORI 2. AT E LS R A A
PEK - 20 {2 60 AFAC R FEMLEE A8 RE AR 33 8 TR e 818 T %
My BEYE . TREMFIFR T 60 EREBLTRUEAFMWF TSR FL, LS 70
ARG BR800 UMM AR L R & e, HEIE R SRR & bk

T) X 58 B BR R JF 2R s RS ML T & TE RV R SCAR SC R IT R TERUAG LR | & TR
Mk, EiERaE. #HE 4K, HEZABHRNBENS, RIFRETTE &L
YORE AW AR, AR ARRE R TR, R AR KT
BIFRIHES, UG XS R R B, JER 1 /3 R a i At

20 4 80 AR 90 FAV), JeSE B T L-HArmE Xt 28 et e Hip,
Booch, Coad/Yourdon , OMT # Jacobson %5 /7 5:45 8 T & M1 X REKAETF ke FHT 12 00T
ARV 22T 1 W R AME S AR AR, BMERE SR, £ BAEAR FRYRRY:
ANE. @ 90 AR EWIRZERFE, AMNZRIHARRIARN 5 BRAE LA
SRR, NHHEAB SRR, Hit R E# TR A MELS; H a5
BRRRWARKNER, AR TH SR 5UME. EXMERT, Z—B#8ES
(UML)F 90 A BARIIE T 4 .

UML #7/ BART = E M X £ 758 %% G. Booch. J. Rumbaugh 1 I.
Jacobson I T1EE, MMMTMER BRI T KEAAREERES, F UML S
IR AN RN F M T U —Rp ik, IR T R P Bt £0 8
AIRLE. UML AR M AN REERIAEGRE FHENOES, #AMEENERE:,
ELAL I — BRI RIS . 1997 4F 11 H UML #f OMG HZ0UE R R0 AR dtigiE
7. OERR R LE iR & RS A EEEIE S bR

UML ZEiEHANE LA E U E W TR B THE, UER R T w34 5 B
EeEE RO E R e LB S, M ESERA N IRES, Rk
15 FX L SR AT R . UML W—FMEBEIE S MBS, BHEE¥hH—t
HARKE X REBENEFHENAEECEAIFSHE, [HEEX IS HHE
R AR A R 3k 03k LAY

M UML B SRA S, 2B TiHEN L FRER, OMG AR KA
B SRR T HE T SERR FA TOARMERIHST, e AR Za A, © e Iz

ii UML 5 #4754 K 5% 0 i A A2 5 1%t

TS MMM RS, WEHGFERRS . BESFHAS . AL TN F
g R RS REREE. ESREERTREE TR, REEH,. JREE.
B EATERAE SR 1 H e MR AU R T HENS, o] TGRS, FlankE
fRTE . ok S ARFRFFRE . s PO RSET ST L, FE

f£ UML REZEE A B LN RA Y, BB IE TR — A F R SEE e R . B AR
fiif) UML2.0 JRASKE 25T UML B9 X — IR E R RIBGH . K i UML ¥ m B E 5 XAk
ATHTIE . KRR AL, RO B T AR AR E R s

AMBUGE T 5 R R A UML A X090, BT R RERER
MR JR#aS LK UML R RBRaTshas . v b R i i X S i B it ot 5 Sl
EREILAS . (HERXRRGEM LFT) FEVRE THRARMERES . B8,
AN . SR W DL R AR ZR G5 3 1A S THI [XoF B B R S o A0) 2
WHIRETE; (A UML #1TRIGXN R B) FENA TEmMNERTF RN B, 557
BrEg. BB B RO R S ER; (RERAMEE) M E TaERE S
MM EEFEENERWNESEAR;, (UML EHASiditEa) W EF 20 mm
SRS HRRER; (UML 2E5FM) 51t T UML MFTA RERRRMETTE, B,
FRERAREHEHERAR T UML M RFIRER .

¥ K UML 7R ESKZEANAE XA (UML ERREFE) 38 T #1758
B RGEH ABTFHEXT UML #H78 BAMEA; (F UML 98 Web N RF) iTie Tia
A UML BT Web N BRI RFEEMBAR S HE; (FERXREAGMRK. 81, 0
RS THEY A4 T K UML R B F i m g AmBR4ms i £\ b 5 T E; (M8,
Hafk, HEZRY UML RF) HE T 40l A UML XHE A Xt 8 0 Fi B R —— P HE 4R
REEH LR ; (UML 5 Visual Basic B HBFI AR Y FETS T M UML #HEI3]|
Visual Basic F2/P B St ik, (XML 2K UML 2848) JH8 7 il XML
5 UML &4, SIEZhSH Web AR, SEEMLK B2B MAEMR; (WETYE
BOREMRRF) AR 1R S AER R EE kA RER R LN RT LI
(UML 53475045 Lt R Y% UML 7E3447 /0 NS md R4 7 & R i A
BT R EmFEMAN R, SR w357 g2k R G5 MR e T8 S Y
YFME; (UML 5 J2EE ST TFR) REEN A T A J2EE FER SRR 17
W, ¥ UML 8RR R B 2 & N B R v .

NBE AN REEREARNEFAE. (COM BFLE) f (ATL ERNE) , &
ABRT T i 1 5 R AR A——COM il ATL AR ME AR5 5SHANE.

WA —A (Executable UML iR NHEE) , XAHNE T 4T UML B34 5 H K
FHER, fERERIA O UE SR R A B A sh A R o rTRE, iR BB &
-t

FEPATE iii
B2, XEBMERONFEE TIEME GRS IBEEN L SER, F
A T A S AU B E SRR AR | TR AR THEANNS, FEABFCEW N

B RTINS, ATLAR, - AERR R
HET I, FRE AP AR EMFXEA, fORRBBE .) 5.

wmKFITFME HSK HE

Foreword
by Peter Freeman

" " he recent and rapid advances in hardware and communications have led to
ran explosion of concurrent, real-time, and distributed applications. This, in
turn, is changing forever the nature of the demands on practical software devel-
opment. The widespread advent of object-oriented approaches and now the use
of UML are changing practice, but as usual, at a pace that lags behind the needs.

One reason for this lag has been the absence of good, authoritative, practical
guides to the object-oriented analysis and design of concurrent applications, espe-
cially those that are distributed and/or real-time. This book goes a long way
toward fulfilling that need.

I cannot think of a better person to write a definitive text on this topic than Has-
san Gomaa. For more than 20 years, Hassan has contributed to a deeper under-
standing of concurrent, distributed, and real-time applications through his work in
industry as a designer, his research into new real-time design methods, and his
teaching as a university professor. This book shows the results of his experience.

It is superbly organized and illustrated, as only an experienced teacher could
have done. It shows the depth of understanding of the technology that comes
from long and deep research focused on the subject matter. It has the illustrations
and practical knowledge that come from long and direct contact with practical
software design.

I hope that you enjoy this book as much as I did, and that you will be able to
use it for many years to come.

Peter A. Freeman

John P Imlay, Jr., Dean and Professor
Georgia Institute of Technology

May 2000

xiil

Foreword
by Bran Selic

Errors using inadequate data are much less than those using no data at all.
—Charles Babbage

recent search of a popular bookseller’s Web site revealed a total of 1,188
A titles (and growing daily) that are classified as dealing with “software engi-
neering.” Despite this apparent glut, there is precious little engineering in most of
them and, correspondingly, little or no engineering in much of the software being
developed these days. This book aims to change that.

Traditional engineering disciplines invariably involved the use of science and
mathematics to ensure that a design would meet its objectives at an acceptable
cost. Thus, one could proceed with high confidence to construct a bridge based on
predictions made from a mathematical model of the design. In the case of soft-
ware, however, design is primarily an informal process too often devoid of formal
predictive models or techniques. From this perspective, it is highly instructive to
contrast how software and hardware have evolved over the last several decades.
Whereas hardware has become smaller, faster, cheaper, and more reliable, soft-
ware has become larger, slower, more expensive, and less reliable over the same
period. Significantly, modern hardware design relies heavily on constructing pre-
dictive models.

The absence of engineering fundamentals from software practice can be
attributed in part to the fickle, almost chaotic, nature of software, which makes it
notoriously difficult to model mathematically. Despite this inherent difficulty,
however, a number of very useful analytical techniques have been developed. In
particular, such techniques have evolved in the embedded real-time domain,
where it is often critical to predict the temporal properties of software with a high

Xvi

FOREWORD

degree of certainty because human lives may depend on it. Yet, regardless of their
proven effectiveness, these methods are not used very often. In fact, many real-
time developers are not even aware of their existence.

The issue here is one of culture, or, more appropriately, the lack of one. Writ-
ing software is primarily an intellectual exercise, unhampered by physical limita-
tions such as the need to cut and shape material or to expend large amounts of
energy. Seduced by this apparent lack of resistance and the common perception
that when all is said and done, only the code matters, far too many practitioners
still equate software design with the process of writing software. Strangely
enough, the same individuals have no trouble understanding the difference
between designing a jumbo jet and assembling it.

Another incidental hurdle to the introduction of these techniques into soft-
ware practice is that for historical reasons, some of them are defined in the context
of the traditional procedural programming model. Although the techniques are
not fundamentally dependent on that model, there remains the problem of map-
ping them to the newer object-oriented programming model for those who want
to exploit the many advantages of that paradigm.

Hassan Gomaa’s book is the first one I have seen that addresses these issues in a
systematic and comprehensive manner. Much more than a mere compilation of
unconnected “patterns” and point techniques, it explains clearly and in detail a way
of reconciling specific traditional engineering techniques with the industry-stan-
dard Unified Modeling Language. Furthermore, it shows how such techniques fit
into a fully defined development process, one that is specifically oriented toward
developing concurrent, distributed, real-time systems. (Experienced software
developers recognize fundamentally hard problems behind each of these terms
individually—systems that combine all three typically belong to the category of the
most challenging engineering problems.)

Based on the well-known dictum that we learn best by doing, fully worked-
out, non-trivial examples take up a major portion of this book. The reader will
benefit greatly from working through one or more of these examples to gain an
intuitive feel for the approach, and, on a higher plane, for what software engineer-
ing should ultimately look like.

Bran Selic
May 2000

Preface

The UML Notation and Software Design Methods

This book describes the object-oriented analysis and design of concurrent applica-
tions, in particular distributed and real-time applications. Object-oriented concepts
are crucial in software analysis and design because they address fundamental issues
of adaptation and evolution. With the proliferation of notations and methods for the
object-oriented analysis and design of software systems, the Unified Modeling Lan-
guage (UML) has emerged to provide a standardized notation for describing object-
oriented models. However, for the UML notation to be effectively applied, it needs to
be used in conjunction with an object-oriented analysis and design method.

Most books on object-oriented analysis and design only address the design of
sequential systems or omit the important design issues that need to be addressed
when designing distributed and real-time applications. Blending object-oriented
concepts with the concepts of concurrent processing is essential to the successful
designing of these applications. Because the UML is now the standardized notation
for describing object-oriented models, this book uses the UML notation throughout.

The COMET Concurrent Object
Modeling and Architectural Design Method
COMET is a Concurrent Object Modeling and Architectural Design Method for

the development of concurrent applications—in particular, distributed and real-
time applications. The COMET Object-Oriented Software Life Cycle is a highly

xviii

PREFACE

iterative software life cycle, based around the use case concept. The Requirements
Modeling phase views the system as a black box. A use case model is developed,
which defines the functional requirements of the system in terms of actors and
use cases.

In the Analysis Modeling phase, static and dynamic models of the system are
developed. The static model defines the structural relationships among problem
domain classes. Object structuring criteria are used to determine the objects to be
considered for the analysis model. A dynamic model is then developed, in which
the use cases from the requirements model are refined to show the objects that
participate in each use case and their interactions with each other. In the dynamic
model, state-dependent objects are defined by using statecharts.

In the Design Modeling phase, the software architecture of the system is
designed, in which the analysis model is mapped to an operational environment.
The analysis model, with its emphasis on the problem domain, is mapped to the
design model, with its emphasis on the solution domain. Subsystem structuring
criteria are provided to structure the system into subsystems. For distributed
applications, the emphasis is on the division of responsibility between clients and
servers, including issues concerning the centralization versus distribution of data
and control. In addition, the design of message communication interfaces is con-
sidered, including synchronous, asynchronous, brokered, and group communica-
tion. Each subsystem is then designed. For the design of concurrent applications,
including real-time applications, the emphasis is on object-oriented and concur-
rent tasking concepts. Task communication and synchronization interfaces are
designed. The performance of the real-time design is analyzed by using the Soft-
ware Engineering Institute’s rate monotonic analysis approach.

What This Book Provides

Several textbooks on the market describe object-oriented concepts and methods,
intended for all kinds of applications. However, distributed and real-time applica-
tions have special needs, which are treated only superficially in most of these
books. This book provides a comprehensive treatment of the application of funda-
mental object-oriented concepts to the analysis and design of distributed (includ-
ing client/server) and real-time applications. In addition to the object-oriented
concepts of information hiding, classes, and inheritance, this book also describes
the concepts of finite state machines, concurrent tasks, distributed object technol-
ogy, and real-time scheduling. It then describes in considerable detail the COMET

ORGANIZATION OF BOOK

method, which is a UML based object-oriented analysis and design method for
concurrent, distributed and real-time applications. To show how COMET is
applied in practice, this book also describes several comprehensive case studies,
presented by application area: real-time software design, client/server software
design, and distributed application design.
The following are distinguishing features of this book:
¢ Emphasis on structuring criteria to assist the designer at various stages of the
analysis and design process: subsystems, objects, and concurrent tasks
* Emphasis on dynamic modeling, in the form of both object interaction
modeling and finite state machine modeling, describing in detail how object
collaborations and statecharts work together
* Emphasis on concurrency, describing the characteristics of active and passive
objects
* Emphasis on distributed application design and the ways in which distrib-
uted components can communicate with each other

* Emphasis on performance analysis of real-time designs, using real-time
scheduling

¢ Comprehensive case studies of various applications to illustrate in detail the
application of concepts and methods

AR

Organization of Book

The book is divided into three parts. Part [of the book provides a broad overview
by describing concepts, technology, life cycles and methods for designing concur-
rent, distributed, and real-time applications. Chapter 1 starts with a brief descrip-
tion of the difference between a method and a notation, followed by a discussion of
the characteristics of real-time and distributed applications. Chapter 2 presents a
brief overview of the aspects of the UML notation used by the COMET method.
Next, there is a description of the important design concepts (Chapter 3) and neces-
sary technology support (Chapter 4) for concurrent and distributed systems. This is
followed in Chapter 5 by a brief survey of software life cycles and design methods.

Part II of the book describes the COMET method (Concurrent Object Model-
ing and architectural design mEThod). In Chapter 6, there is an overview of the
object-oriented software life cycle used by COMET. Chapter 7 describes the
requirements modeling phase of COMET, in particular, use case modeling, and

XiX

PREFACE

Chapters 8 through 11 describe the analysis modeling phases of COMET. Chap-
ters 12-16 describe the design modeling phase of COMET. Chapter 17 describes
the performance analysis of real-time designs using real-time scheduling—in par-
ticular, rate monotonic analysis.

Finally, in Part 1II, the COMET method is illustrated through five detailed
case studies of concurrent application design: two real-time design case studies,
one client/server case study, and two distributed application case studies. The
real-time Elevator Control System case study is described in Chapter 18, with
both non-distributed and distributed solutions presented. The client/server
Banking System case study is described in Chapter 19. The real-time Cruise
Control System case study is described in Chapter 20. The distributed Factory
Automation case study is described in Chapter 21, and the distributed Electronic
Commerce case study is described in Chapter 22.

WL ML N

Ways to ‘Read This Book

This book may be read in various ways. Reading it in the order it is presented,
Chapters 1-5 provide introductory concepts and technology, Chapter 6 provides
an overview of COMET, Chapters 7-17 provide an in-depth treatment of design-
ing applications with COMET, and Chapters 18-22 provide detailed case studies.

Part I is introductory and may be skipped by experienced readers, who will
want to proceed directly to the description of COMET in Part II. Readers familiar
with the UML may skip Chapter 2. Readers familiar with software design con-
cepts may skip Chapter 3. Readers familiar with concurrent and distributed sys-
tem technology may skip Chapter 4. Readers familiar with software life cycles
and methods may skip the survey in Chapter 5. Readers particularly interested in
COMET may proceed directly to Parts Il and III. Readers particularly interested in
distributed application design should read Chapters 4, 12, and 13, the additional
information on concurrent subsystem design in Chapters 14-16, as well as the dis-
tributed application case studies in Chapters 18, 19, 21, and 22. Readers particu-
larly interested in real-time design and scheduling should read Chapters 4, 14-17,
and the hard real-time design case studies in Chapters 18 and 20.

Experienced designers may also use this book as a reference, referring to vari-
ous chapters as their projects reach that stage of the analysis or design process.
Each chapter is relatively self-contained. For example, at different times, you
might refer to Chapter 7 for a concise description of use cases, Chapter 10 when
designing statecharts, Chapter 11 for developing the dynamic model, Chapter 13

ACKNOWLEDGMENTS

for distributed component design, Chapter 14 when designing concurrent tasks,
or Chapter 17 for real-time scheduling. You can also understand how to use the
COMET method by reading the case studies, because each case study explains the
decisions made at each step of the design process.

AL i T RN,

Acknowledgments

The author gratefully acknowledges the reviewers of earlier drafts of the manu-
script. Of the reviewers, he is particularly grateful to Jeff Magee, Larry McAlister,
Kevin Mills, Robert G. Pettit IV, and Maria Ericsson for their insightful reviews. I
would also like to thank Anhtuan Q. Dinh, Ghulam Ahmad Farrukh, Johan Galle,
Kelli Houston, Jishnu Mukerji, Leslee Probasco, Sanjeev Setia, and Duminda
Wijesekera for their helpful reviews.

Additional thanks are due to Kevin Mills for his contributions on the use of
stereotypes in COMET, Shigeru Otsuki for his assistance with the section on
design patterns, Roger Alexander for his help with one of the examples in Chap-
ter 15, and Larry McAlister, who contributed Figure 21.1. Particular thanks are
due to Tyrrell Albaugh for her hard work coordinating the lengthy production
process, to Kristin Erickson who coordinated the editorial process, and to Malinda
McCain for her meticulous copyediting of the manuscript.

The author is also grateful to his students in his Software Design and Soft-
ware Project Lab courses at George Mason University for their enthusiasm, dedi-
cation, and valuable feedback. The author gratefully acknowledges the Software
Engineering Institute (SEI) for the material provided on real-time scheduling, on
which parts of Chapter 17 are based. The author also gratefully acknowledges the
Software Productivity Consortium’s sponsorship of the development of an earlier
version of the material described in Chapters 9-11 of this book. He also thanks
Arman Anwar, Hua Lin, and Michael Shin for their hard work producing earlier
versions of the figures.

Last, but not least, I would like to thank my wife, Gill, for her encouragement,
understanding, and support.

XXi

Contents

Foreword by Peter Freeman «xiii
Foreword by Bran Selic =~ xv
Preface xvii

PARTI UML NOTATION, DESIGN CONCEPTS,
TECHNOLOGY, LIFE CYCLES, AND METHODS1

1 Introduction...... veseas B N ceraiiaians 3
1.1 Object-Oriented Methods

and the Unified Modeling Language.................... 4

1.2 Methodand Notation 5

1.3 Concurrent Applications. 6

1.4 Real-Time Systems and Applications 8

1.5 Distributed Systems and Applications.................. 10

16 Summary............ 11

2 Overviewof UMLNotation.............ccovevviianenn..., 13

21 UMLDiagrams............cccoviininininnininnnnn.... 13

22 UseCaseDiagramsoovvininn.., 14

23 UML Notation for Classes and Objects 14

24 ClassDiagrams...............cooiviniinniinnnn..... 15

25 Interaction Diagrams................................. 17

26 StatechartDiagramscccoivnenn.... 19

27 Packages 20

2.8 Concurrent Collaboration Diagrams. 21

Vi

CONTENTS

29 Deployment Diagrams 23
210 UML Extension Mechanisms 24
211 TheUMLasaStandard.............................. 25
212 Summary. ...l 26
Software Design and Architecture Concepts................. 27
31 Object-Oriented Concepts. 27
32 InformationHidingo 30
33 Inheritance............. ... 36
3.4 Active and Passive Objects...... 37
3.5 Concurrent Processing 38
3.6 Cooperation between Concurrent Tasks.:...40
3.7 Information Hiding Applied to Access Synchronization. .49
38 Moniors ... e 51
39 DesignPatterns................ ...l 53
3.10 Software Architecture and Component-Based Systems. . . 55
311 Summary................ i T 56
Concurrent and Distributed System Technology............. 57
41 Environments for Concurrent Processing 57
42 Runtime Support for Multiprogramming

and Multiprocessing Environments 60
43 TaskScheduling 63
44 Operating System Input/Output Considerations. 65
45 Client/Server and Distributed System Technology 68
4.6 World Wide Web Technology......................... 73
47 Distributed Operating System Services 75
48 Middleware. e 78
49 Common Object Request Broker Architecture (CORBA). .81
4.10 Other Component Technologies 85
411 Transaction Processing Systems. 86
412 SUMMAry..........o i 88
Software Life Cyclesand Methods 91
51 Software Life Cycle Approaches 91
52 Design Verification and Validation 98
53 SoftwareTesting.................................... 99
54 Evolution of Software Design Methods 101

CONTENTS
5.5 Evolution of Object-Oriented
Analysis and Design Methods 103
5.6 Survey of Concurrent and Real-Time Design Methods . .. 105
5.7 SUMMATrY. ...ttt 106
PART I COMET: CONCURRENT OBJECT MODELING

AND ARCHITECTURAL DESIGN WITHUML 107
6 Overview of COMETcoiiiiiiiiiiniiennan... 109
6.1 COMET Object-Oriented Software Life Cycle........... 109

6.2 Comparison of the COMET Life
Cycle with Other Software Processes. 112
6.3 Requirements, Analysis, and Design Models 113
6.4 TheCOMETinaNutshell, 115
6.5 SUMMArIY.0oi it 118
7 UseCaseModeling 119
71 UseCases ...t 119
72 Actors. 120
7.3 Actors, Roles,and Users............................. 123
7.4 IdentifyingUseCases.................cooiviuninin.. 123
7.5 Documenting Use Cases in the Use Case Model 124
7.6 Examplesof UseCases 125
7.7 Use Case Relationships.............................. 130
78 UseCasePackages.............. ..., 134
7.9 SUMMATY.ottt 135
8 StaticModeling i i it 137
8.1 Associations between Classes 137
8.2 Composition and Aggregation Hierarchies............. 145
8.3 Generalization/Specialization Hierarchy 147
84 Constraintso 149
8.5 Static Modelingandthe UML 149
8.6 Static Modeling of the System Context................. 152
8.7 Static Modeling of Entity Classes 155
88 Summary..... 157
9 Object and Class Structuring.coivieneinn... 159
9.1 Object Structuring Criteria........................... 160
9.2 Categorization of Application Classes 160

vil

