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Preface

This book goes back a long way. There is a tradition of research and teaching in
inelasticity at Stanford that goes back at least to Wilhelm Fliigge and Erastus Lee.
[ joined the faculty in 1980, and shortly thereafter the Chairman of the Applied
Mechanics Division, George Herrmann, asked me to present a course in plasticity.
I decided to develop a new two-quarter sequence entitled “Theoretical and Com-
" putational Plasticity” which combined the basic theory I had learned as a graduate
student at the University of California at Berkeley from David Bogy, James Kelly,
Jacob Lubliner, and Paul Naghdi with new computational techniques from the
finite-element literature and my personal research. I taught the course a couple of
times and developed a set of notes that I passed on to Juan Simo when he joined
the faculty in 1985. I was Chairman at that time and I asked Juan to further develop
the course into a full year covering inelasticity from a more comprehensive per-
spective. Juan embarked on this path creating what was to become his signature
course. He eventually renamed it “Computational and Theoretical Inelasticity”
and it covered much of the material that was the basis of his research in material
modeling and simulation for which he achieved international recognition. At the
outset we decided to write a book that would cover the material in the course. The
first draft was written quite expeditiously, and versions of it have been circulated
privately among friends, colleagues, and interested members of the research com-
munity since 1986. Thereafter progress was intermittent and slow. Some things
were changed and some new chapters were added, but we both had become dis-
tracted by other activities in the early 1990s. Prior to that, we frequently discussed
what would be necessary “to get it out the door,” but [ do not recall the subject
even coming up once in the years immediately preceding Juan’s death in 1994,
Since that time [ have been repeatedly urged to bring the project to completion.
Through the efforts of a number of individuals, the task is now completed.

This book describes the theoretical foundations of inelasticity, its numerical
formulation, and implementation. It is felt that the subject matter described herein
constitutes a representative sample of state-of-the-art methodology currently used
in inelastic calculations. On the other hand, no attempt has been made to present
a careful account of the historical developments of the subject or to examine in
detail important physical aspects underlying inelastic flow in solids. Likewise, the



Vi Preface

list of references should, by no means, be regarded as a complete literature survey
of the field.

Chapter 1 begins with an overview of small deformation plasticity and vis-
coplasticity in a one-dimensional setting. Notions introduced in Chapter 1 are
generalized to multiple dimensions and developed more comprehensively in sub-
sequent chapters. Ideas of convex optimization theory, which are the foundations
of the numerical implementation of plasticity, are first introduced in Chapter 1.
In Chapter 2 the theory is generalized to muitiple dimensions. In addition to the
three-dimensional case, plane-strain and plane-stress cases are presented, as well
as thermodynamic considerations and the principle of maximal plastic dissipa-
tion. Chapter 3 deals with integration algorithms for the constitutive equations of
plasticity and viscoplasticity. The two most important classes of return-mapping
algorithms are described, namely, the closest-point projection and cutting-plane
algorithms. The classical radial return method is also presented. Another impor-
tant mathematical tool in the construction of numerical methods for inelastic
constitutive equations, the operator-splitting methodology, is also introduced in
Chapter 3. Chapter 4 deals with the variational setting of boundary-value prob-
lems and discretization by finite element methods. Key technologies for successful
implementation of inelasticity, such as the assumed strain method and the B-bar
approach, are described. The generalization of the theory to nonsmooth yield sur-
faces is considered in Chapter 5. Mathematical numerical analysis issues of general
return-mapping algorithms and, in particular, their nonlinear stability are presented
in Chapter 6. The generalization to finite-strain inelasticity theory commences in
Chapter 7 with an introduction to nonlinear continuum mechanics, the notion of ob-
jectivity, variational formulations of the large-deformation case, and hyperelastic
and hypoelastic constitutive equations. The practically important subject of objec-
tive integrative algorithms for rate constitutive equations is described in Chapter 8.
In Chapter 9 the theory of hyperelastic-based plasticity models is presented. This
chapter covers the local multiplicative decomposition of the deformation gradient
into elastic and plastic parts and numerical formulations of this concept by way
of return-mapping algorithms. Chapter 10 deals with small and large deformation
viscoelasticity.

I believe a good, basic course of a semester’s or quarter’s duration would focus
on Chapter | 10 4. For more advanced students wishing to understand the large
deformation theory, Chapters 7 and 8 are essential. Chapter 8, in particular, deals
with the types of formulations commonly used in large-scale commercial computer

" programs. There is more research interest in the hyperelastic-based theories of
Chapter 9, which are more satisfying from a theoretical point of view. However,
as of this writing, they have not enjoyed similar attention from the developers of
most commercial computer programs.

Over the past two years, this text has been used as the basis of courses at Stanford
and Berkeley which provided vehicles for readying the manuscript for publication.
I wish to sincerely thank the students in these classes for their considerable pa-
tience and effort. Present and past graduate students of Juan's and mine were also
instrumental in bringing the endeavor to fruition. Among them I wish to thank, in
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particular, Francisco Armero, Krishnakumar Garikipati, Sanjay Govindjee, John
Kennedy, and Steve Rifai. However, without the hard work and devotion of two
recent students, I doubt that this project would have been completed: Vinay Rao
and Eva Petocz critically read the manuscript and interacted with the other indi-
viduals who provided corrections. Vinay and Eva synthesized the inputs, made
changes, and managed the master file containing the manuscript. They searched
for and found lost drawings, and when missing figures could not be located, they
drew them themselves. They spent many hours in this effort, and I wish to express
my sincere thanks and gratitude to them.

Thomas J. R. Hughes
Stanford, March 1998
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Motivation. One-Dimensional
Plasticity and Viscoplasticity

In this chapter we consider the formulation and numerical implementation of one-
dimensional plasticity and viscoplasticity models. Our objective is to motivate our
subsequent developments of the theory in the simplest possible context afforded
by a one-dimensional model problem. Since the main thrust of this monograph is
the numerical analysis and implementation of classical plasticity, viscoplasticity,
and viscoelasticity models, an attempt is made to formulate the basic governing
equations in a concise form suitable for our subsequent numerical analysis. To this
end, once a particular model is discussed, the basic governing equations are sum-
marized in a BOX that highlights the essential mathematical aspects of the theory.
Likewise, the corresponding numerical algorithms are also summarized in a BOX
that highlights the essential steps involved in the actual numerical implementation.
We follow this practice throughout the remaining chapters of this monograph.

1.1 Overview

An outline of the topics covered in this introductory chapter is as follows.

In Section 1.2 we present a detailed formulation of the governing equations for
a one-dimensional mechanical device consisting of a linear spring and a Coulomb
friction device. This simple mode! problem exhibits all the basic features under-
lying classical rate-independent (perfect) plasticity, in particular, the notion of
irreversible response and its mathematical modeling through the Kuhn—Tucker
complementarity conditions. Subsequently, we generalize this model problem
to account for hardening effects and discuss the mathematical structure of two
classical phenomenological hardening models known as isotropic and kinematic
hardening.

In Section 1.3 we summarize the equations of the one-dimensional elastoplastic
boundary-value problem and discuss the weak or variational formulation of these
equations. Then we provide an outline of the basic steps involved in a numeri-
cal solution procedure. With this motivation at hand, in Section 1.4 we discuss
the numerical integration of the constitutive models developed in Section 1.2
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and introduce the fundamental concept of return mapping or catching up algo-
rithm. As shown in Chapter 3 this notion has a straightforward generalization to
three-dimensional models and constitutes the single most important concept in
computational plasticity. In Section 1.5 we illustrate the role of these integrative
algorithms by considering the simplest finite-element formulation of the elasto-
plastic boundary-value problem. We discuss the incremental form of this problem
and introduce the important notion of consistent or algorithmic tangent modulus.

Finally, Section 1.6 generalizes the preceding ideas to accommodate rate-
dependent response within the framework of classical viscoplasticity. We examine
two possible formulations of this class of models and discuss their numericalimple-
mentation. In particular, emphasis is placed on the significance of viscoplasticity
as a regularization of rate-independent plasticity. This interpretation is important
in the solution of boundary-value problems where hyperbolicity of the equations in
the presence of softening can always be attained by suitable choice of the relaxation
time.

For further reading on the physical background, and generalizations, see
Lemaitre and Chaboche [1990].

1.2 Motivation. One-Dimensional Frictional Models

To motivate the mathematical structure of classical rate-independent plasticity,
developed in subsequent sections, we examine the mechanical response of the
one-dimensional frictiona! device illustrated in Figure 1.1.

We assume that the device initially possesses unit length (and unit area) and
consists of a spring, with elastic constant E, and a Coulomb friction element, with
constant oy > 0, arranged as shown in Figure 1.1. We let o be the applied stress
(force) and ¢ the total strain (change in length) in the device.

1.2.1 Local Governing Equations

Inspection of Figure 1.1 leads immediately to the following observations:

)
b
S A

O -
T = - o
Oy

FIGURE 1.1. One-dimensional frictional device illustrating rate—independent plasticity.
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a. The total strain ¢ splits into a part £ on the spring with constant E, referred
to as the elastic part, and a strain £” on the friction device referred to as the

plastic part, that is
02

b. By obvious equilibrium considerations, the stress on the spring with constant
E is o, and we have the elastic relationship

o =Eef =E(c-¢"). (1.2.2)

Now we characterize the mechanical response of the friction element as follows.

1.2.1.1 Irreversible frictional response.

Assume that ¢, ¢” and ¢ are functions of time in an interval [0. 7] C R. In
particular, we let

el [0, T] — R,

and

&P = 3—5”. (1.2.3)

ar
Change in the configuration of the frictional device is possible only if é” # 0. To
characterize this change, we isolate the frictional device as shown in Figure 1.2.
We make the following physical assumptions.

1. The stress o in the frictional device cannot be greater in absolute value than
oy > 0. This means that the admissible stresses are constrained to lie in the
closed interval [—oy, oy] C R. For future use we introduce the notation

E, ={t €eR|f(r):=|t] —oy <0} (1.2.4)

to designate the set of admissible stresses. For reasons explained below, we
denote by oy the flow stress of the friction device. The function f : R — R,
defined as

f(t)=|r] -0y <0, (1.2.5)

then is referred to as the yield condition. Note that E, is a closed interval and,

therefore, it is a closed convex set.
2. If the absolute value o of the applied stress is less than the flow stress oy, no
change in £” takes place, i.e., ¢” = 0. This condition implies

P =0if f(o):=|o]l -0y <O. (1.2.6)
From (1.2.2) and (1.2.6) it follows that
f(©)<0=6 = Eé, a.2.7
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Q

Oy

1

(a)

l‘< 1 > >ép

T - o ° > T
Jy
(b)

FiGure 1.28. Characterization of frictional response for a device with constant oy > 0.

and the instantaneous response of the device is elastic with spring constant E.
This motivates the denomination of elastic range given to the open set

int(E,) ={r eR | f(1):= It} -0y <0}, (1.2.8)

since (1.2.6) and (1.2.7) hold for o € int (E,).

3. Because, by assumption |, stress states o such that f (o) = lo| — oy > Oare
inadmissible and é” = 0 for f (o) < 0 by assumption 2, a change in €* can
take place only if f (6) = |jo| — oy = 0. If the latter condition is met, the
frictional device experiences slip in the direction of the applied stress o, with
constant slip rate. Let y > 0 be the absolute value of the slip rate. Then the
preceding physical assumption takes the form

&= y>0 if o =0y >0,

. . (1.2.9
P = -y <0 if 0 = -0y <O.



