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Preface

This book grew out of notes used in a modeling course attended by
upper-division undergraduate mathematics, science, engineering, and
economics students that I and others have taught over several years in
the mathematics department at Wright State University. From the be-
ginning I had to rely heavily on home-made lecture notes, as I could not
find a text suitable for beginners, and yet dealt with models challenging
to a third or fourth year student. Some books had good miodeling ex-
. amples, but the students didn’t like to read them as they didn’t develop
the mathematical structure; however, I found the “easy-reading”, gen-
eralized, modeling texts too light on material. After a couple of years
of hearing from colleagues that they would like the same sort of text
that I envisioned, I started to write this book.

The technical prerequisites for a reading of the text are mlmma.l a
solid calculus course, some exposure to differential equations (such as
is sometimes found in calculus courses), and a little matrix algebra.

Although the use of the whole book would be ideal for a one-year in-
troduction to applied math, the form of the book reflects to some extent
a couple of one-quarter courses that are taught at Wright State Univer-
sity: MTH 306/606 Mathematical Modeling, attended by junior-level
and senior-level mathematics majors and graduate students in math ed-
ucation, biomedical engineering, biophysics, economics, mechanical en-
gineering, electrical engineering, computer science, and statistics; and
MTH 333/533 Partial Differential Equatlons attended by junior-level
and senijor-level math and physics majors, as well as graduate students
in electrical, mechamcal and biomechanical engineering. A student can
take the courses in either order. The modeling course covers, typically,
Chapters 2 through 6 with supplementary material from Chapters 7,
8, and 9. The PDE course is based on Chapters 9,10, and 11, with
supplementary material from chapters 3, and 5,6.

xi



xii Preface

At the same time, I have tried to make it as suitable for self-study
as I possibly could. Besides making the subject accessible to the large
number of students who find themselves without a relevant course, this
should be of help to a teacher who wants to devote a large amount of
classtime to the discussion of projects. The wide range of examples
and mathematical techniques will broaden the student’s vista and help
get across the idea that there is no fixed set of tools for modeling.

In fact, the chapters are largely self-contained, although there are
definite connections and built-in redundancies so that the student can
see the same idea used in a different context. In this way, a clear
stream can be followed (see the figure at the end of this preface). As
the graphic indicates, Chapter 3 is the foundation of the book. It is
natural to proceed from there to Chapter 4. One can go directly to
Chapter 6 if probabilistic methods are to be the main content of the
course. Chapters 1 and 2 have found use in surveying and exploring
with students some of the simple ideas of applied mathematics, but
their quick pace may dismay the insecure student. In particular, the
first half of Chapter 1 is meant as entertainment; if the student doesn’t
find it so,-it could be skipped. The rest of chapter 1 contains some
background material. The chapters themselves are written in a sort of
newspaper pyramid style so that one can either study a chapter thor-
oughly or simply read the first part of each chapter. Sections that are
not necessary for later chapters and/or require more matliematical so-
phistication and/or ask for much classtime are marked with an asterisk
(*).

The pedagogical intent of this book is to help develop in students a
feeling for the use of mathematics as a tool in the understanding of the
world. A common compl‘aint‘ of students when beginning the modeling
course is that they “lack the physical intuition” to be able to model.
The book is put together with the feeling that a “modeling intution”
can be nurtured in the mathematics student. It is mainly a matter
of developing confidence, not just in problem solving, but in ability to
approach complicated phenomena by asking a few simple questions. To
this end and to encourage students to do much of the thinking on their
own, exercises are built into the narrative. These exercises function
as a governor: if they are trivial, the student can pick up speed; if
they are not quite understood, a rereading of the text will be called
for. Some require little work and may function simply to keep the
student’s pencil sharpened, but are designed to he_JP the student take
first responsibility for learning. Other exercises require some amount



Preface xiii
of thinking and/or search for data. There are also problem sections at
the end of the chapters; these consist mainly of particular models, some
of which may be suitable for a class project. Several independent trails
can be followed through the problem sections. For example, chemical
reactions and compartment models are introduced in the problems of
Chapter 4 and reappear in problem sections in several later chapters.

It is clear to its teachers that modeling is not mathematics per se,
but certainly the point of it is to use mathematics to show the under-
lying links between apparently disparate phenomena. Indeed, in many
mathematics books, one often comes across a footnote remarking that
the subject presently under discussion can also be clothed a different
way, and in such and such a context. In this book these footnotes have
been collected and expanded. I'd like to make the seemingly paradoxi-
cal statement that an engineer or scientist will want to take a modeling
course, not to learn abstractions, but rather the opposite: to become
better acquainted with concrete phenomena. Often in engineering texts
one sees a formula derived and then some magical mathematics applied
to it, and the result is a “theoretical rule of thumb” that appears in
a box on the page. The student engineer accepts the boxed result as
a substitution for the phenomenon and while becoming a practicing
engineer will continue to do so. If he or shethe engineer ends up doing
something more than paper work, he or she will notice a disparity and
the boxed formula is thrown into the trash bin of “theory” which is
disparagingly regarded as being unrelated to the “real world”. On the
other hand, the development of mathematical skills is necessary for a
development of modeling skills. It may turn out that the mathemati-
cal technique nepded for a particular model is yet to be found. Many
problems started out as modeling problems and turned into areas of
(pure) mathematics. Some of the great mathematicians spent an ex-
traordinary amount of their time on modeling (Archimedes, Newton,
Euler, Bernoulli, and others).

It is not possible to acknowledge everyone who aided in the develop-
ment of this book. Special thanks must go to Jim Vance, Gloria Sickles,
Masahiro Yamashita, Zdenek Kalva, Gabriel Svobodny, who carried out
some of the experiments, and especially Anne-Marie Svobodny, who is
responsible for much of the final art-work. Early partial versions of
the text were class-room tested by David Miller and Larry Turyn. I
benefited from the help of several institutions, including Wright State
University, Center for Theoretical Study in Prague, and Dayton Mu-
seum of Natural History. I would like to thank the reviewers, Lester



xiv Preface

Caudill, Ann Morlet, Walter Pranger, and Allan Struthers, and the ed-
itorial and production staff at Prentice Hall, especially George Lobell
and Bob Walters. Of course I owe a debt to the authors of the many
books that I have enjoyed reading and have found especially valuable in
writing this one; the reader will find them in the recommended reading
sections at the end of every chapter. '

Thomas Svobodny
Dayton, Ohio
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[

(38

i

~

- N :
o ;

O
- M-
v




Contents

HRR IR B
F¥

Preface

1 The
1
2
3

o~ O

Modeling Adventure

An Example of the Modeling Process . . . . . ... ...
Free Radical Formation by Ultrasound . . . . . e e

Fourier Transform . . ... ................
Problems and Recommended Reading . . . . . ... ..

2 Stability and Bifurcation

1
2
3
4

Potentials . . . . . ... ... ... ... ... .. ...
Bifurcation . . . . ... ... ... ... ...
Catastrophe . . . . . v v e e
Problems and Recommended Reading . ... . . ... ..

3 Dimensions

1

2
3

Dimensions . . . . . .. . . ... ... ...
*Dimensions in Electricity and Magnetism . . . . . . . .
Scalingand Life . . . . . ... ... ............
Dimensional Analysis and the Pi Procedure . . . . . . .
*The PiTheorem . . . . .. ... ... ..........
Limitations and Extensions . . . ... .. ........
Scale Modeling . . . ... ........... . .....
Problems and Recommended Reading . . ... .. ...

vii

iv

xi

11
12
20
24
25
26
28

31
31
39
49
56



viii

Contents

4 Growth and Relaxation

1

2

3

1

3

Exponential Growth . . . . ... .. ... .......
The Relaxation Response . . . .. ... ........
Self-limiting Growth . . . . . .. .. ... ... .. .
Autoregulation . . . ... ... ... ... ... ...
Economic Growth . . . ... ... ...........

A Splash of Reality: Nonlinear Oscillations . . . . . .
Forced Vibrations . . . . . .. ... ... ........
Linear Response . . ... ... ... ... .......
The Energy Cycle and the Power Absorption Curve . .
*General Resonance . .. ................
Nonlinear Response . . . . . . ... ...........
Problems and Recommended Reading . . . . . . e

6 Random Thinking

1
2

3

5
6

Probabilities. . . . .. ... ... e e e e e e
The Law of Averages . . . . .. .. ...........
Drunkard’s Walk . ... ... ... T
Counting on Probabilities . . . . ... .........
Aside on Entropy and Information . ... .. . e e
Conditional Probabilities. . . . . . .. ... ......
Random Variables . . .. ................
Continuous Random Variables. . . .. .........
Time between Random Events . . ... ... e

7 Random Processes

1

Processes: Poisson Points and Random Walks . . . . .
Poisson Points . . . . .. ... .. ... ... .. ...

The Parking Lot Problem . .. ... ... b e e e
*Orbital Debris: Distribution . . . .. ....... ..

101
101
105
109
115
120
128

139
139
140
144
165
172
173
182
185
186
193

199
199
204
210
211
213
215
217
228
231
233

236

248



Contents
3 Continuous-time Processes . . . . . . . e e e e e e
Service Facilities . . . . . .. ... . ... ... ...
*Orbital Debris: Population Growth . . . . . e e
4 BeyondMarkov .. ... ... ... ... 00
General Point Processes . . . . .. .. e e e e e e
QUeues .. . . . . . . e e e e e e e e
*Cell-cycle Modeling . . . . . .. ... ... ..
5 *Simulation and the Monte Carlo Method . . . . . . ..
6  Problems and Recommended Reading . . . . . ... ..

8 Complex Systems

Coupled Oscillators . . . . . .. ... ...........
*Biological Rhythms . . . . . . .. ... ... ......
*Swaying Smokestacks . . . . . . .. ...
*Dynamo Theory . . . ... ... .. e e e e e

[y

T N

9 Snakes and Chains

1 Snakesand Chains . . . ... ... ... .. .......
ALineofCars . ................. R
Crystal Vibrations . . . .. ... .. ...........
Fixed-end Boundary Condition . . . . . ... ... ...
Forced Vibrations . . . . . .. ... ... ... ......
*Filters and Ladders . . . . . ... ... ... ......
*Modeling the Ear . . . . .. ... ... .........
*Earthquakes . . . . . ... ... ... ... ... ...
Snakes versus Chains . . . . .. ... ... ........
Problems and Recommended Reading . . . . ... ...

SOk W

10 Waves

1 Waves Here and There . . . . ... ... ... .. ....
"2  Conservation Laws . . ... ........ e
An Example of the Method of Charactenstlcs e
ConstitutiveLaws . . . . .. ... .. ... ......

A nonlinear conservation law. Shocks. . . . . ... . ..
*Conservation Laws in Higher Dimensions . . . . . . . .

3 Population Models . . ... ... ... ..........
*Birth-Death Processes . . ... .............

4  *First-order Quasilinear Equations: General Theory -
*Cauchy Problem . . . . .. ... ... .. .. ......

Problems and Recommended Reading . . . ... .. ..

ix

271
274
279
281
281
284
285
290
295

299
299
311
318
330
338

342
342
345
347
352
354
360
372
386
388
390

395
395
398
407
410
413
421
422
426

. 427



5 Linear Systems . ... ..............
Blood Flow. Acoustics . . . . ... ... ....
Transmission Lines . . . . . ... ... .. e
Solving Linear Hyperbolic Systems . . . . . . .
Solving the Transmission Line Equations . . . .

6  Systems of Nonlinear Conservation Laws . . . .
*Momentum Equation Using Pull-back Method
Sound Speed inGases . . ... ... ......
Shock as a Dissipative Structure . .. ... ...
Conservation of Energy . . ... ........
*Quasilinear Hyperbolic Systems. Simple Waves

7 WaterWaves . .. ................

ABigBore . . . ... ... ... .. . ..
Surge on Deep Water. . . . . ... . ... ....
8  Problems and Recommended Readmg .....
11 Diffusion
1  How It Goes at Small Scales . . . . .......
2 The Diffusion Equation . ... .........
The Einstein-Smoluchowski Relation . . . . . .
Conservation Laws. Heat Conduction- . . . . . v
Newton’s Law of Cooling . . ..........
*Reactions. . . . . . . . ... ...
Solving the Diffusion Equation . ... ... .. ,
Signal Distortion . . . . ... ..........
3  Steady-state DiffusionBoundary Conditions . .
4  Melting and Freezing. Moving Boundaries . . .
5 Problems and Recommended Reading . . . . .

A Electromagnetism

B The SI System of Units

C Some Physical Properties of Materials
Bibliography

Index

P RiRR

Contents

522

524

525

530
535



Chapter 1
The Modeling Adventure

1 What Is Modeling?

A first point that should be made is that we reflexively draw upon
models to aid in our understanding of and our dealings with the world
around us. Scientists, for example, must construct models of one sort or
another to make sense of their findings, to communicate these findings
to others, and to make comparisons with the work of their colleagues.
Models are an indispensable part of that thnllmg aspect of scientific
endeavor: prediction making.
The models that we call upon may be

1. Pictorial
2. Analogical
3. Mathematical

Our concern in this book is, of course, with the overtly mathemat-
ical, but let us first see how the ontogeny of a mathematical model
sometimes replicates, at least in spirit, a phylogeny of scientific discov-
ery.

We will turn to the example of the evolution of models for the
resting potential in nerve cells.

Information is sent through nerves and muscles as signals that are
electrical in nature. These signals (nerve pulses) are a time record of
changes in a homeostatically permanent electric potential—a voltage—
that exists between the inside and the outside of the cells. It was real-
ized that in order to understand and model more complicated aspects
of nerve-cell firing, one had to have a model of this resting potential.
The existence of the resting potential follows from a straightforward

1



2 Chapter 1. The Modeling Adventure

observation. If one electrode of a voltmeter is placed inside the cell
and the other electrode is grounded outside the cell, the needle of the
voltmeter will be deflected. Let us denote the measurement of the
voltmeter by V.

If the voltage reads —80 mV (a typical value), then we know the size
of the electrical field, and the negative sign tells us that it is directed
into the cell. An electrical field manifests a separation of charge: here,
negative charge inside the cell and positive outside. How is this possible
in the biological cell?

Biological fluids are electrolytes. That is, they are solutions of salts,
whose molecules dissociate into charged atoms, or ions.! For example,

NaCl — Na™,Cl™
KCl — K*,CI™

Here is a first model for the existence of V: when the cell is first
formed, it is filled with an overabundance of negative ions that are
sealed inside, while the leftover positive ions are in the surrounding ex-
tracellular fluid. This model was quickly laid low by experimental ob-
servation. First, to any measurable accuracy, both the fluid inside and
the fluid outside the cell seemed to be electroneutral. In every spatial
region of the fluid large enough to be measured, there are equal num-
bers of positive and negative ions. Second, the cellular membrane, the
wall separating inside from outside, is known to be permeable to some
ions, in particular the positive potassium ions, KT. When a substance
is dissolved in another, if all outside forces are equal, the dissolved sub-
stance, or solute, tends to a uniform or homogeneous concentration.
High concentrations of the solute disperse of their own accord. The
time rate of change of this dispersal is proportional to the spatial gra-
dient of the concentration. The constant of proportionality is negative,
to mean that the motion is down a gradient. (This is called diffusion
and forms the subject matter for Chapter 11.) If the membrane were
permeable to all ions, then any differences in concentration across the
membrane would soon even out, and then

V -0,

in equilibrium.

! Negative ions are called anions because they are attracted to the positive elec-
trode, which is called the anode. Positive ions are called cations because they are
attracted to the negative electrode, which is called the cathode.



1. What Is Modeling? 3

On the other hand, if the membrane could allow only the positive
potassium ions to pass through and not any corresponding negative
ions, then a voltage could be set up that just balanced the diffusive
force of the positive ions. To see this, suppose that there were an excess
of K7 ions inside the cell. In other words, we assume a spatial gradient
exists between inside and outside. The K* ions would diffuse with a
net outward motion. However, because overall electroneutrality would
thereby be disturbed and the inside would become negative relative
to the outside, an electrical field would be set up that would oppose
the emigration of positive ions. At first this voltage would be small,
increasing as time went on to exactly balance the diffusive force. A
static equilibrium would be reached (Figure 1.1):

Felectric T Fdiffusion = 0-

F, electric
A -

N

-
Fgiffusion

Figure 1.1 The balance between the electric and diffusive forces across the
membrane

The situation is completely analogous to a common battery.? In a
battery, the energy supplied by chemical reactions produces a separa-
tion of charge and so an electrical potential. In our case, diffusion is the
driving force of the voltage. When we measure —80 mV, it is as though

2That chemical batteries are typically referred to as “cell” batteries is beside the
point.



