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Preface

The knowledge of solid state physics has grown tremendously since
1940. This growth has occurred on an international scale and perhaps has
been more rapid, in relation to the 1940 effort, than that in most other
major fields of physics. Although this growth of solid state physics has
not been characterized by radical changes in basic physical theory, it has
greatly extended the theory and the understanding of its implications.
Also, the viewpoints and activities in certain closely allied fields, particu-
larly in electronics, metallurgy, crystallography, and chemistry of solids,
have been influenced markedly by developments in solid state science.

As a result of this expansion in knowledge solid state physicists are
finding that, in order to make significant contributions, it is necessary to
concentrate their efforts in narrower fields than formerly. Because of this
specialization it is desirable that a mechanism exist whereby investigators
and students can readily obtain a balanced view of the whole field. Also,
it would be very helpful to workers in allied fields if the results of solid
state science, pertinent to their activity, were readily available. However,
the descriptions of solid state developments are widely dispersed in many
journals so that it is difficult to obtain a broad and unified picture of the
field. Although excellent short texts have appeared recently, many scien-
tists have come to recognize the need for an up-to-date treatise on solid
state science that reviews comprehensively all of the important facets of
the subject. The purpose of the present series is to fulfill this need, at
least in part, by publication of compact and authoritative reviews of the
important areas of the field.

The editors and publishers hope that it will be possible to publish
most of the basic reviews in about a dozen volumes. The plan of publica-
tion selected is similar to that used in the ‘““Advances’’ series covering
various other scientific fields. Well qualified scientists, many of whom are
in the early years of professional life, will prepare articles on parts of the
field that seem ripe for presentation. Three general types of articles are
solicited: (1) broad elementary surveys that have particular value in
orienting the advanced graduate student or an investigator having little
previous knowledge of the subject;.(2) broad surveys of fields of advanced
research that serve to inform and stimulate the more experienced investi-
gators; (3) more specialized articles describing important new techniques,
both experimental and theoretical. It is planned that the authorship be
international even though the articles will be written in English.

X



X PREFACE

It would be desirable to publish the articles in a more highly organized
sequence than that which actually will be followed. However, it appeared
that an ideally organized presentation sequence could not be adhered to
without serious delays in publication. Therefore, the actual selection of
articles for a given volume results from compromise between considera-
tions such as timeliness of the subjects, availability of authors, and inter-
relation of subject matter.

The volumes will be published semiannually for a period of time. It is
hoped that this publication rate will be sufficient to fulfill, in a reasonable
period, the pressing need for a survey and to insure that individual articles
will not be subjected to long publication delays. After a few years it is
expected that the volumes will be published annually.

A list of articles in prospect for future volumes is given on page vii.
It will be noted that the concentration of theoretical articles is much
greater in the first than it is planned to be in later volumes. Actually it
proved easier to initiate the series by directing requests primarily to
theoretical physicists since their work is usually more amenable to general
presentation at any given time. It is intended that the over-all content
of the series will stress the experimental as well as the theoretical aspects
of the field.

The editors are deeply indebted to many colleagues for valuable
advice during the period of formulation of the series. We owe particular
thanks to Dr. Conyers Herring.

August 1, 1955 Frederick Seitz
David Turnbull
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I. Introduction

This chapter has been written in an attempt to consolidate the meth-
ods developed during the past fifteen years for calculating electron wave
functions and electronic structures in solids. For the sake of completeness,
much of the early (pre-1940) work that is basic to the new developments
is also presented, although not always in as much detail as its importance
merits.! Except for Part IIT, which gives a brief historical survey of the
one-electron formulation, no attempt has been made to preserve the
chronological sequence of developments in this field; instead, each tech-
nique is discussed independently and as a unit. The emphasis here is on
method, the brief applications to actual solids serving for the purpose of
illustration.

We are concerned here with an approximate method for solving the
Schrodinger equation for a system which contains a large number of
interacting particles, such as is encountered in a crystalline solid. We
restrict the investigation to the case of a perfect crystal, and further, we
neglect effects that arise from the motion of atomic nuclei, that is, it is
assumed that the nuclei are at rest at fixed positions in the crystal lattice.
Thus, the nuclear coordinates enter the problem only as parameters.
Having defined the problem as a purely electronic one, we are still left
with a many-electron problem which cannot be solved explicitly, and
thus we must resort to some approximate treatment for handling the
Schrodinger equation.

One of the most fruitful methods devised for the solution of many-
electron problems is the one-electron formulation, in which the total wave

! For a review of the early work on this subject, the reader is referred to F. Seitz,
““Modern Theory of Solids.” McGraw-Hill, New York, 1940.



METHODS OF THE ONE-ELECTRON THEORY OF SOLIDS 3

function for the system of electrons is chosen to be a combination of
functions, each of which involves the coordinates of only one electron.
It is this approximation which forms the basic framework for calculating
electronic wave functions in solids. Equivalently, the method may be
described by saying that each electron sees, in addition to the potential
of the fixed charges, only some average potential due to the charge
distribution of the other electrons, and moves essentially independently
throughout the system.

By means of this approximation, then, the solution of the many-
electron problem is reduced to (1) finding the equations to be satisfied
by the one-particle wave functions, and (2) finding accurate solutions
to these equations for the electronic system under consideration. Part IT
of this chapter will deal with the first of these problems, and the rest
of the chapter will be devoted to methods for solving one-electron equa-
tions in crystals.

The one-electron scheme has been applied to atoms, molecules, and
crystalline solids. In the case of solids, with which we are primarily
interested here, this scheme is the only one which has successfully related
electronic structure of the solid to crystal structure; since it is essentially
the only method available to us at the present time, it is important to
know what errors, if any, are inherent in its use. This is particularly
important because the one-electron equations cannot, in general, be
solved precisely, and one would like to know whether the difference
between the calculated and experimental values of the energy of the
system is due to inadequate solution of the one-electron equations, or
actually arises from the fundamental approximation which is used. Un-
fortunately this is a problem which cannot be resolved completely at
present, and we must rely, for a test of the approximation, upon the
detailed comparison of various one-electron results with experiment. It
should be mentioned, however, that there are other considerations which
support the one-electron point of view. This general problem will be
discussed in Section 4; for the present, suffice it to say that the validity
of the one-electron scheme is assumed. We shall see how far we can go
toward explaining the properties of perfect crystals.

Il. The Fock Equation

Let us consider a system of N interacting electrons which we may
assume represents a crystal. The system is completely specified if we
know the total electronic wave function of the system,

\I,(q.liq2: et qN),

where g; represents the coordinates of the sth electron including its spin
coordinate. We shall assume that ¥ is normalized. If we let 3¢ represent
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the Hamiltonian operator for the system, the energy of one of the sta-
tionary states is given by the integral

E = [Y*3c¥drdr, - - * drw,

where [dr; represents an integration over the space coordinates and a
summation over the spins of the 7th electron. Now the energy integral is
stationary with respect to arbitrary variations of ¥ which leave the
normalization of ¥ unchanged; if we perform the variation using the
method of undetermined multipliers, we obtain in the usual way the
Schrédinger equation,

ov = EVv.

We are not concerned with the most general variation in ¥, however; but
restrict ourselves to the case where ¥ can be represented by a combination
of one-electron functions, ¢;(q:). Let us replace ¥ in the energy integral
by a suitable combination of the ¢;; we may then make independent varia-
tions in ¥ by varying each of the ¢; individually. If we vary one of the
one-electron ¢’s, e.g. ¢;, we obtain the Schrédinger equation to be satis-
fied by ¢;. Thus, the condition that the energy integral be stationary, with
respect to arbitrary variations in the ¢, is that each ¢; satisfy a certain
Schrodinger equation; if we have chosen the proper antisymmetrical
combination of ¢;, this equation will be the Hartree-Fock or Fock equa-
tion for the orbital ¢;.

1. DERIVATION OF THE Fock EQUATION

We have thus far merely outlined the variational procedure to be
used in finding the Schrédinger equations to be satisfied by the one-
electron wave functions. In order to carry it out, we must specify ¥ as a
function of the ¢;, and, further, must specify the Hamiltonian for the
system. The simplest combination of ¢;s which might be used is the
product function

¥ = 01(q1)e2(q:) * -+ on(qn); (1.1)

this function, unfortunately, does not satisfy the Pauli exclusion prin-
ciple, for it is not antisymmetric in the interchange of electrons. The
antisymmetric function which may be constructed from the ¢; was shown
by Slater? to be the determinantal function, .,

e1(q)  ei(qs) - ei(gw)
e2(q1)  e2(q2) - es(aw)

v = . g ) ] (12)
en(@1) en(@z) - - - en(qw)

*J. C. Slater, Phys. Rev. 34, 1293 (1929).
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in which the individual ¢; are elements. The correct symmetry properties
of ¥ are evident from the properties of determinants, since the process of
interchanging two columns, which reverses the sign of ¥, corresponds to
the interchange of two electrons. In addition, the determinant vanishes
when any two ¢; are identical. Hence, the Pauli principle is automatically
satisfied by (1.2). It may be shown from the principles of group theory?
that (1.2) is the only antisymmetrical combination of the ¢;.

The function (1.2) is not normalized when the ¢; are normalized, and,
thus, (1.2) must be multiplied by a constant. The normalization constant
usually depends upon the choice of the ¢;, but it is particularly simple in
the case where they are orthogonal to each other, namely, (N!)—}. Since
a substantial simplification in the energy integral,

E = f‘I’*JC‘I’dTlde A dTN, (1.3)

results when the one-electron wave functions are orthogonal, we shall
impose this condition. This does not place any important restriction on
the ¢;, because, even if we start with a nonorthogonal set of one-electron
functions, we may convert them to an orthogonal set before proceeding.
This problem will be discussed in more detail later; for the present, we
assume the ¢; orthonormal.

It is convenient to consider each ¢; as constructed from a space
function y,(r;) and a spin function #;({,), namely,

ei(q1) = ¥i (r)n:(Ly), (1.4)

where r; represents the space coordinates of particle one and ¢, its spin
coordinate. We shall assume in the following discussion that the »; are
normalized eigenfunctions of the z component of the spin; they may be
labeled as “‘spin-up” or “spin-down,” the two functions being mutually
orthogonal. Hence, the y; are themselves orthogonal and normalized.
The requirement that the ¢; form an orthonormal set may be written

Jei*(@1)ei(q)drs = 6; (1.5)

where the integration implies a summation over the two values of spin
variable as well as a space integration. The total wave function ¥ may
then be written symbolically

¥ = (N1)~ det |ei(gy)] (1.6)

where, by this expression, we mean the normalized determinant in (1.2).
In setting up the Hamiltonian 3¢ for our crystal problem, it is expe-
dient to make certain simplifications from the start. We assume that all

3 E. P. Wigner, “Gruppentheorie.” Vieweg, Braunschweig, Germany, 1931.
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the electrons may be divided into two classes: (1) the inner electrons
which belong to closed shells and may be regarded as rigidly attached
to the nuclei, and (2) the outer electrons whose wave functions are
appreciably affected by changes in interatomic distances, and which,
therefore, contribute to the binding energy of the solid. The latter class
certainly includes the valence electrons and may, in some cases, include
the outermost closed shell of electrons in each atom as well. Where we
draw the line between inner and outer electrons depends upon the solid
under consideration; certainly the more electrons per atom included in
the second group, the higher the ultimate precision which can be expected
from the calculation.

It will be assumed that the effect of the rigidly bound electrons on the
outer electrons can be expressed in terms of a potential function; thus,
each nucleus and its rigidly attached unit of electrons produces an ion-
core potential for the rest of the system. The system of electrons repre-
senting our crystal is now defined, more explicitly than it was at the
beginning of this section, as an assembly of N outer electrons interacting
with each other and with a group of M fixed rigid ion cores.

The Hamiltonian operator for the system just described may be

written
N N
h? 1 " e
3@—2(—2—”113.;4-1/1')‘*“2‘2;54—1, 1.7)
i ij

where the indices 7 and j are to be summed over all N electrons, A; is
presumed to operate on the coordinates of the 7th electron, and V; is the
potential energy of the 7th electron in the field of all M ion cores. Since
e?/r;; is the Coulomb interaction of the 7th and jth electron, the terms
1 = j are excluded from the second summation in (1.7); this is indicated
in the usual way by a prime on the summation. Finally, I is a constant
which represents the interaction of the rigid ion cores with each other.
We need not, at this time, specify an explicit form for 7, but if the division
into inner and outer electrons has been carried out properly, the ion cores
overlap to a negligible amount, and since, in addition, they consist of
spherically symmetric charge distributions,

M
_ 1\ Z.Zge?
I=5 z - (1.8)
a,B

where Zqe is the asymptotic charge of ion «. The self-energy of the ion
cores need not be included in (1.7) since it is essentially the same in the
solid and in free atoms, and, thus, drops out of the cohesive energy. It
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should be noted that both V, and I depend upon the crystal structure
of the solid, in that they contain the internuclear distances parametrically.

We are now in a position to reduce the energy integral (1.3) which,
in terms of the determinantal function discussed in the preceding section,
has become:

E = (N)-1 det |or*(qm)oe det |ou(qn)|drs - - - drw. (1.9)

Since the Hamiltonian (1.7) is a linear operator, the contribution to E
from each term in 3¢ may be considered separately. It is convenient to
define

3¢ = —(h*/2m)A; + V.. (1.10)

Let us first consider the contribution from one of the 3¢;, e.g. from 3¢,
The integral,

(ND)=Yf det |or*(qm)[3¢; det [@i(qn)|drs - - - drw, (1.11)

can easily be evaluated if we recall the basic properties of determinants.
Each of our determinants has N! terms and each term is a product of N
factors. Furthermore, no two factors in a given term come from the
same row, nor do they come from the same column of the determinant.
Thus, 3¢; operates on one ¢;(q;) in each term. Because of the orthogonality
relationship between the ¢, the contribution to (1.11) will vanish unless
all the factors in a term from det |¢w*| are identical (except for complex
conjugate signs) to the factors in a given term from det || ; this will be
true for only one term in det |ow*| for each term in det |gx. A term
from the determinant is either positive or negative, but the product of
identical terms from each determinant is always positive. Using the fact
that the ¢ are normalized, we can perform all of the one-particle integrals
except those involving particle q;; then, (1.11) is reduced to a sum of N'!
one-particle integrals which have the form [¢:*(q;)3C;01(q;)dr;. Since the
¢r enter the determinant symmetrically, we expect the same contribution
from each ¢, and may thus write the N! terms making up (1.11) as
N
W)W = 1) [ e (@)meena)drs (1.12)

k

All of the 3¢; are identical, except that they operate on different
particle coordinates, q;. The integrals in (1.12) do not depend on q;
because this is merely an integration variable. Thus, each 3¢; gives the
same contribution to the energy, namely, (1.12), and the total contribu-
tion from 23C; may be written as

N R
zfsok*(‘h)gclw(%)dﬁ- (1.13)
%
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The second summation in the Hamiltonian (1.7) may be handled in a
similar fashion. Again we consider the contribution to the energy integral
term by term, but where 3¢; operated on the coordinates of one particle
only, we now have ($)e?/|r; — r;|, which involves the coordinates of two
electrons. Thus, for each term in the summation, there are fwo terms in
det |gw*| for each term in det || which give nonvanishing contributions.
For the sake of brevity, we shall skip over the detailed arguments here,
and merely state the result; the total contribution from (3) Ze?/r; to the
energy integral is

N
1) [ [ ler(@)[2e/r.0) ouw(as) [dradr,

Py 4
- /<pk*(q1)<pk'*(Q2)(62/7‘12)sak(Qz)(Pk’(m)dTld?z]- (1.14)

The first term in the brackets has an obvious interpretation. Since
lex(q1)|? is the probability density that particle 1 will be found at the
coordinate q;, this term is the Coulomb interaction of two electrons hav-
ing one-electron wave functions, ¢, and ¢;. This interaction energy is
then summed over all electron pairs. The summation arising from the
second term in brackets in (1.14) has a less obvious interpretation; it is
called the exchange energy of the electron system and is a direct result
of having used the determinantal wave function, It is readily seen from
(1.14) that only electron pairs with parallel spin contribute to the
exchange term

The energy integral (1.3) has now been reduced to a summation of
one- and two-particle integrals which involve orthonormal one-electron
wave functions:
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It is to be noted that the primes may be dropped from the last two sum-
mations in this equation without affecting E, since the two additional
terms (for which k£ = k') are just equal and opposite. Equation (1.15)
may be used to calculate the total energy of a solid (within the approxi-
mation discussed above) in terms of the one-electron solutions, ¢;. The
summations are over the occupied electronic states. Of more interest to
us at the present time, however, is the fact that the one-electron equations
to be satisfied by the ¢, may, themselves, be derived from (1.15) by
means of the variational principle.



