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Preface

To many students, as well as to many teachers, mathematics seems like a mundane
discipline, filled with rules and algorithms and devoid of beauty and art. However to
someone who truly digs deeply into mathematics this is quite far from the truth. The
world of mathematics is populated with true gems; results that both astound and point
to a unity in both the world and a seemingly chaotic subject. It is often that these gems
and their surprising results are used to point to the existence of a force governing the
universe; that is, they point to a higher power. Euler’s magic formula, e” +1 = 0, which
we go over and prove in this book is often cited as a proof of the existence of God. While
to someone seeing this statement for the first time it might seem outlandish, however if
one delves into how this result is generated naturally from such a disparate collection
of numbers it does not seem so strange to attribute to it a certain mystical significance.

Unfortunately most students of mathematics only see bits and pieces of this amaz-
ing discipline. In this book, which we call Algebra and Number Theory, we intro-
duce and examine many of these exciting results. We planned this book to be used in
courses for teachers and for the general mathematically interested so it is somewhat
between a textbook and just a collection of results. We examine these mathematical
gems and also their proofs, developing whatever mathematical results and techniques
we need along the way. In Germany and the United States we see the book as a Masters
Level Book for prospective teachers.

With the increasing demand for education in the STEM subjects, there is the real-
ization that to get better teaching in mathematics, the prospective teachers must both
be more knowledgeable in mathematics and excited about the subject. The courses in
teacher preparation do not touch many of these results that make the discipline so ex-
citing. This book is intended to address this issue. The first volume is on Algebra and
Number Theory. We touch on numbers and number systems, polynomials and poly-
nomial equations, geometry and geometric constructions. These parts are somewhat
independent so a professor can pick and choose the areas to concentrate on. Much
more material is included than can be covered in a single course. We prove all rele-
vant results that are not too technical or complicated to scare the students. We find
that mathematics is also tied to its history so we include many historical comments.

We try to introduce all that is necessary however we do presuppose certain sub-
jects from school and undergraduate mathematics. These include basic knowledge
in algebra, geometry and calculus as well as some knowledge of matrices and linear
equations. Beyond these the book is self-contained.

This first volume of two is called Algebra and Number Theory. There are fourteen
chapters and we think we have introduced a very wide collection of results of the type
that we have alluded to above. In Chapters 1-5 we look at highlights on the integers. We
examine unique factorization and modular arithmetic and related ideas. We show how
these become critical components of modern cryptography especially public key cryp-
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VI —— Preface

tographic methods such as RSA. Three of the authors (Fine, Moldenhauer and Rosen-
berger) work partly as cryptographers so cryptography is mentioned and explained
in several places. In Chapters 4 and 5 we look at exceptional classes of integers such
as the Fibonacci numbers as well as the Fermat numbers, Mersenne numbers, perfect
numbers and Pythagorean triples. We explain the golden section as well as expressing
integers as sums of squares. In Chapters 6-8 we look at results involving polynomi-
als and polynomial equations. We explain field extensions at an understandable level
and then prove the insolvability of the quintic and beyond. The insolvability of the
quintic in general is one of the important results of modern mathematics.

In Chapters 9-12 we look at highlights from the real and complex numbers leading
eventually to an explanation and proof of the Fundamental Theorem of Algebra. Along
the way we consider the amazing properties of the numbers e and 7r and prove in detail
that these two numbers are transcendent.

Chapter 13 is concerned with the classical problem of geometric constructions and
uses the material we developed on field extensions to prove the impossibility of certain
constructions.

Finally in Chapter 14 we look at Euclidean Vector Spaces. We give several geomet-
ric applications and look for instance at a secret sharing protocol using the closest
vector theorem.

We would like to thank the people who were involved in the preparation of the
manuscript. Their dedicated participation in translating and proofreading are grate-
fully acknowledged. In particular, we have to mention Anja Rosenberger, Annika
Schiirenberg and the many students who have taken the respective courses in Dort-
mund, Fairfield and Hamburg. Those mathematical, stylistic, and orthographic errors
that undoubtedly remain shall be charged to the authors. Last but not least, we thank
de Gruyter for publishing our book.

Benjamin Fine
Anthony Gaglione
Anja Moldenhauer
Gerhard Rosenberger
Dennis Spellman
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1 The natural, integral and rational numbers

1.1 Number theory and axiomatic systems

Number theory begins as the study of the whole numbers or counting numbers. For-
mally the counting numbers 1,2, ... are called the natural numbers and denoted by IN.
If we add to this the number zero, denoted by 0, and the negative whole numbers we
get a more comprehensive system called the integers which we denote by Z. The focus
of this book is on important and sometimes surprising results in number theory and
then further results in algebra. Many results in number theory, as we shall see, seem
like magic. In order to rigorously prove these results we place the whole theory in an
axiomatic setting which we now explain.

In mathematics, when developing a concept or a theory it is often not possible, all
used terms, properties or claims to prove, especially existence of some mathematical
fundamentals. One can solve this problem then by an axiomatic approach. The basis
of a theory then is a system of axioms:

— Certain objects and certain properties of these objects are taken as given and ac-
cepted.

— A selection of statements (the axioms) are considered by definition as true and
evident.

A theorem in the theory then is a true statement, whose truth can be proved from the
axioms with help of true implications. A system of axioms is consistent if one can not
prove a statement of the form “A and not A”. The verification is in individual cases
often a complicated or even an unsolvable problem. We are satisfied, if we can quote
a model for the system of axioms, that is, a system of concrete objects, which meet all
the given axioms. A system of axioms is called categorical if essentially there exists
only one model. By this we mean that for any two models we always get from one
model to the other by renaming of the objects. If this is true then we have an axiomatic
characterization of the model.
In the next section we introduce the natural numbers axiomatically.

1.2 The natural numbers and induction

The natural numbers N are presented by the system of axioms developed by G. Peano
(1858-1932). This is done as follows.

The set N of the natural numbers is described by the following axioms:
(N1)1eNN.
(N 2) Each a € N has exactly one successor a* € IN.
(N 3) Always is a* # 1, and for each b # 1 there exists an a € N with b=a*.
(N4)a+tb=a" +b".

DO0I110.1515/9783110516142-001



2 = 1 The natural, integral and rational numbers

(N5 IfTcN,1eT,and if together with a € T also a” € T, then T = N.
(Axiom of mathematical induction or just induction.)

Remarks 1.1. (1) (N 2) and (N 4) mean that the map

o:N— N

ar—a’

is injective.
(2) From the Peano axioms we get per definition an addition, a multiplication and an

ordering for N:

(i a+1:=a*,
a+b*:=(a+b)",

(i) a-1:=a,
a-b*:=ab+a,

(iii) a < b :© I x € N with a + x = b (“a smaller than b”),
a<b:oa=bora<b(“aequal or smaller than b”).

We need to recall some definitions.
A semigroup is a set H + @ together with a binary operation - : H x H — H that
satisfies the associative property for all a,b,c € H:

(a-b)-c=a-(b-c).
The semigroup is commutative if
a-b=b-a.

In the commutative case we often write the operation as addition + instead of multi-
plication - .

A monoid S is a semigroup with a unity element e, that is, an element e with a-e =
a=e-aforall aesS;eisuniquely determined.

Moreover, a monoid S is called a group if for each a € S there exists an inverse
element a' € S with aa™! = a"'a = e. The monoid or group is named commutative or
abelian if in addition

a-b=b-a foralla,beS.

We often write 1 instead of e. We also often drop - and use just juxtaposition for this
operation. If we use the addition + we often write O instead of e and call O the zero
element of S.

Theorem 1.2. (1) The addition for N is associative, that is,

a+(b+c)=(a+b)+c,



1.2 The natural numbers and induction == 3

and commutative, that is,
a+b=b+a.

This means, N is a commutative semigroup with respect to the addition.
(2) The multiplication for N is associative, that is,

a(bc) = (ab)c,
and commutative, that is,
ab = ba.

N has also the unity element 1 for the multiplication. Therefore, N is a commutative
monoid with respect to the multiplication.
(3) The multiplication is distributive with respect to the addition, that is,

(a+b)c=ac+bc.
(4) Fora,b € N exactly one of the following is true:
a<b, a=b or b<a
(5) Ifa<bandc<dthena+c<b+dandac<bd.
Proof. The statements follow directly from the definition and the Peano axioms. We
leave the proofs as an exercise. As an example we prove (3) using (1) and (2): Let

a,b € N be arbitrary and T ¢ N the set of the ¢ € N with (a + b)c = ac + bc. We have
1€ T because

(a+b)-1=a+b=a-1+b-1.
Now, let c € T. Then
(a+b)c*=(a+b)c+(a+b)=ac+bc+a+b=ac+a+bc+b
=ac" +bc".
Hencec™ e Tandso T =N. a

As usual we write @" fora-a---aand nafora+a+---+a, whena,ne N,
a-a---a arat+---+d
ntimes n times

Remarks 1.3. (1) By the development of the addition in IN we suggest the usual rep-
resentation of natural numbers as numerals:

2=1r=1+41, 3=2"=2+1,
4=3"=3+1 andsoon.
(2) From the Peano axioms we also get that for each natural number n there exist

exactly one natural number m with m < n < m + 1. The set N is therefore a set
unbounded from above.
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(3) Theorem 1.2 also allows to subtract smaller natural numbers from larger ones. If
a,b € N with a < b, then there is an x € N with a + x = b. We define the subtraction
by

X:=b-a

and say “x is equal b minus a”.
Example 1.4.

3=11-8=17 - 14,
31=50-19.

(4) The mathematical proof technique mathematical induction is based on the Peano
axiom (NN 5). It is a form of direct proof, and it is done in two steps.
The first step, known as the base case, is to prove the given statement A(n), which
is definable for all n € IN, for the first natural number 1. The second step, known as
the induction step, is to prove that the given statement A(n) is true for any natural
number n implies the given statement is true for the next natural number. In other
words, if A(1) is true and if we can show that under the assumption that A(n) is
true for any n, then A(n + 1) is true, then A(n) is true for all n € IN.
We call the mathematical induction the first induction principle or the principle of
mathematical induction (PMI).
It is clear that we may start with the mathematical induction with any natural
number n, > 1 instead of 1, we just need a base. This can be done with the ap-
proach B(n) :=A(ng—1+n).

Examples 1.5. (1) Claim.

= nn+1)

2

foralln e N.
k=1

Proof. Let A(n), n € N, be the asserted statement.
(a) A(1) is true because

! 1(1 +1)
2

(b) Assume that A(n) is true for n € N. We have to show that A(n + 1) is true:
n+l1
Zk Zk+(n+1 n(n L +(n+1)
k=1 k=1
_(n+1)(n+2)
= 5 ,
and thisis A(n +1). O




