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Preface

This is the second, revised and enlarged edition of a book on Statistical
Mechanics whose first edition appeared in the year 1995 1.

No doubt there are many excellent books on Statistical Mechanics, rang-
ing from classical ones (like Tolman’s [152], Schrédinger’s [132] and Landau-
Lifshitz’s [83], e.g.) to more modern ones. A partial list of them is contained
in the Bibliography listed at the end of the book. However, we and some of
the more alert among our students could not help feeling some degree of dis-
satisfaction with the way Thermodynamics and Statistical Mechanics are
presented in most standard textbooks, and that for various reasons that
are listed below and that constitute the main motivations for this book,
namely:

i) Thermodynamics, which sets the stage for (equilibrium) Statistical Me-
chanics, develops, after its as meager as powerful set of postulates has
been laid down, essentially by establishing differential relations [145] among
physically accessible, macroscopic quantities like the amount of work and/or
the quantity of heat exchanged in a thermodynamic transformation, the
variations in internal energy and the like. As such, Thermodynamics should
be formulated entirely in the language [2; 35; 52] of differential forms de-
fined, of course, on a suitable manifold of thermodynamically accessible
states, i.e. in an intrinsic geometrical form. The geometrical aspects of
Thermodynamics were first pointed out and put to work by Caratheodory
[33] but, except for a short section in Born’s “Natural Philosophy of Causal-

1That book was actually the outgrowth of a lecture course that G. Morandi gave for the
ICTP Diploma Course in Trieste in 1992 and of various lecture courses given at the
PhD level at the University of Bologna.
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ity an Chance”[26] and the beautiful introductory chapters of Chandrashe-
khar’s book [34], they have been hardly even mentioned in other textbooks
since. -

ii) Although ultimately physicists should mainly learn how to put to work
Statistical Mechanics to solve specific problems, let them be of theoreti-
cal or of experimental origin, the conceptual problems connected with the
foundations of both Classical and Quantum Statistical Mechanics should
definitely not be overlooked and/or alluded to in a too simplistic and dis-
missal way as it is often done?. We are not claiming to be giving in this
book any new contributions to the deep problems associated with the foun-
dations of Statistical Mechanics (which we would be unable to do anyway)
nor to any other part of it. One of its definitely more modest aims has been
that of laying down openly, and in as elementary as possible way, what are
the basic concepts and problems, avoiding as far as possible, whenever con-
ceptual difficulties are encountered, to sweep them under the carpet.

Just to make one almost standard example, one of the founding pillars of
Classical Statistical Mechanics is the ergodic hypothesis [66; 69; 122), i.e,
loosely speaking, the hypothesis that the trajectories in phase space of a
generic conservative dynamical system to which statistical arguments can
be applied should fill in densely the energy hypersurface in phase space®. On
the other hand, Classical Mechanics as it is normally taught deals mainly
‘with completely integrable systems as the glorious examples on which it
can exhibit all the powerfullness of its tools, and the latter are of course
just at the opposite extreme of ergodic systems. The gap is bridged to
some extent by the KAM (Kolmogorov-Arnol’d-Moser) theorem [1; 105 11;
121], which, relies in turn on the theory of perturbations of integrable sys-
tems. Therefore, all these topics should be discussed, at an introductory
level at least, in every course on both Classical Mechanics and/or Statisti-
cal Mechanics.

Ergodicity is one of the cornerstones in the foundations of Quantum Sta-
tistical Mechanics as well. So, it should be discussed also as a fundamen-
tal part of the introduction to Quantum Statistical Mechanics. Strangely

2Despite the invaluable merits that Landau-Lifshitz has as a textbook, its first chap-
ter is an almost paradigmatic example of this kind of dismissal attitude towards the
foundational problems of Statistical Mechanics.

3In other words, that there should be no other significant constant of the motion but
the total energy.
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enough, the role of ergodicity in Quantum Mechanics is even more carefully
avoided in the standard textbooks than that of the same assumption in the
classical context.

As another example, let us recall the almost obvious fact that Statistical
Mechanics and Thermodynamics acquire a rigorous meaning only [64; 91;
127; 128] in the thermodynamic limit4. Now, taking the thermodynamic
limit cannot be always reduced to the (necessary but by no means sufficient)
simple recipe of “letting the volume go to infinity while keeping the density
constant” as the physicists’ folklore often states it. Care must be exerted in
every case to make sure that surface effects are really negligible, and that
may be not at all obvious. On the other hand, developing the formalism of
Statistical Mechanics starting directly at infinite volume leads to difficult
mathematical problems, and one should be aware (at least) that familiar
concepts such as that of a density matrix loose their meaning altogether in
the description of (equilibrium) Statistical Mechanics of infinite systems,
and have to be replaced by the more abstract notion of a “state” [28;
64), i.e. a positive linear functional over the algebra’ of the observables of
the theory that have a local character (“local observables”, see below for a
more precise definition).

iii) The mathematical difficulties associated with the foundations of Sta-
tistical Mechanics have had as a consequence the opening up of a wide gap
between the approach of standard textbooks and that of more advanced and
more mathematical ones. So, ergodic theory is treated with great rigor, e.g.,
in the books by Arnold and Avez [11], Birkhoff [23], Halmos [66], in the
first volume of the treatise of Reed and Simon [122], and in the book by
Jancel [69]. Similarly, Thermodynamics and Statistical Mechanics at infi-
nite volume are treated in the books by Martin-Lof [91] and Ruelle [127;
128] at the classical level, by Bratelli and Robinson [28] and in Ch. IV
of Haag’s book [64] at the quantum level. This list of citations reflects of
course only the authors’ limited knowledge of the subject, and is far from
being exhaustive.

With the possible exception of Jancel’s and Martin-Léf’s, these are all

4Just to make an elementary example, even the familiar notions of “extensive” and “in-
tensive” thermodynamic variables acquire a precise meaning only in the thermodynamic
limit, as we will argue later.

5An abelian algebra in the classical case, a non-abelian one (actually what is called a
“C* -algebra”) in the quantum case.
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strongly mathematically-oriented books, most of which may turn out to
be a bit too hard-going for a readership of theoretical but not necessarily
mathematical physicists. So, there is some need for books (and courses)
that situate themselves, so to speak, midway between standard and more
advanced textbooks. This is the last motivation that we had in mind in
rearranging and expanding a set of lecture notes into a book.

As it stands, the book is supposed to be therefore an “intermediate”
textbook, one in which we have tried to stick to some more mathematical
rigor than usual without at the same time loosing sight of the physical
applications. It is appropriate for a readership of students that have already
an elementary background in Statistical Mechanics. It can be used for
a two-semester graduate course, with Chapters 1 to 5 filling up more or
the less one semester, while the remaining chapters may constitute the
“backbone” of a second semester to which some more specialized topics
can be attached according to the teacher’s tastes.

The book is organized as follows. Classical Thermodynamics is reviewed
in Chapter 1, which contains also an appendix (1B) on the thermodynamics
of paramagnets where some results that will become useful later are derived
and discussed. As some emphasis is laid on geometrical aspects, some of
the relevant notions and theorems of Differential Geometry are summarized
in Appendix A at the end of the book. As a rule, appendices have been
devised to help to some extent the non expert readers. More expert ones
may of course skip them altogether. Chapters 2 and 3 are devoted to Clas-
sical Statistical Mechanics. The introductory Sections (§§ 2.1 to 2.4) are
devoted to the discussion the foundations of Classical Statistical Mechanics,
including the KAM theorem and the theory of statistical ensembles.

Assuming an at least elementary acquaintance with Classical Statistical
Mechanics from the part of the reader, we have discuss only some of its
standard applications, leaving others as problems at the end of the Chapter.

The general structure of the classical correlation functions is also dis-
cussed in § 2.4. The aim there has been to show that a number of math-
ematical structures that one is usually accustomed to discuss in the con-
text of Quantum Mechanics, like the “interaction” or “Dirac” picture for
time evolution, linear response theory, causal response functions and the
fluctuation-dissipation theorem arise already in a natural way in the classi-
cal context. The main source of inspiration for this Section (as well as for
some related material that is included in § 2.1) has been the book on clas-
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sical dynamics by Sudarshan and Mukunda {144]. Apart from it, the only
other place that we know of where a discussion of correlation and response
functions is carried on having the classical case in mind are the old but still
excellent Les Houches lectures by P.C. Martin [89].

In §§ 3.1 to 3.4 we have discussed the dynamics and Statistical Mechan-
ics of classical spin systems. Large use has been made there of the repre-
sentation of the partition function as a multiple Gaussian integral, which
is the precursor of (and the classical limit of) the path-integral represen-
tation in Euclidean time of the partition function for quantum spins. The
conventional mean-field theory is derived as a saddle—pbint approximation
to the Gaussian integral.

As ferromagnetism, that is discussed in § 3.3, is a symmetry-breaking
solution of the mean-field equations (exact solutions of specific models are
discussed later on in the book), this seemed to be the appropriate place
where to begin the discussion of the broad subject of spontaneous symmetry
breaking. This is done in the final Section (§ 3.5) of Chapter 3, where we
discuss also the appearance of Goldstone modes (ferromagnetic spin waves
being a conspicuous example of the latter) and the classical version [95]
of the Mermin-Wagner theorem. Although the latter had been proved by
Mermin himself in a paper dating back to 1967, there seems to be no general
awareness that the theorem can be proved also in a completely classical
context. We thought therefore that reviewing this proof could be of some
usefulness.

Chapter 4 deals with Quantum Statistical Mechanics. Again, some of
the relevant mathematical concepts are summarized in an Appendix (B).
In §§ 4.1 and 4.2, after a resumé of the basic concepts of Quantum Mechan-
ics, we discuss how one should define ensembles in in Quantum Statistical
Mechanics, the difficulties, already alluded to before, that are inherent in
taking the thermodynamic limit, the crucial role that the KMS (Kubo-
Martin-Schwinger) conditions play in this connection, and the quantum
ergodic problem. We conclude Chapter 4 discussing in § 4.3 the properties
of quantum correlation functions. It is pointed out here that quantum cor-
relation functions have, as far as their dependence on time is concerned,
richer analytical properties than their classical counterparts. This leads to
a different form of the fluctuation-dissipation theorem, that of § 2.4 being
recovered as the classical limit of the latter. Note that § 4.3 should not be
read before (or without) § 2.4.
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The development of “anyon” physics into a full-fledged field of au-
tonomous research (see Refs. [15; 16; 29; 84; 97; 98; 118; 158] in the Bib-
liography) has made it compulsory to critically re-discuss the conventional
way of introducing quantum statistics; this is done in Chapter 5. Stressing
the fact that the statistics of identical particles has, in principle, nothing
or very little to do with the formal interchange of labels inside a wave func-
tion, but that it has rather to be inferred from the way the wave function
itself changes under the physical operation of moving particles around each
other in space is essentially what paves the way to “fractional” statistics in
low (d < 2) space dimension. This one should have in mind even when, if
the configuration space is an Euclidean space of dimension d > 3, there is
no room for statistics other than the more familiar Bose-Einstein or Fermi-
Dirac statistics (not considering para-statistics [96], that seem to be of only
historical interest).

After the general discussion of the concept of statistics of identical par-
ticles presented in § 5.1, we give in § 5.2 a hopefully accurate account of
the formalism of second quantization. § 5.3 is more or the less standard,
and discusses the Statistical Mechanics of an assembly of identical particles.
The first part discusses the non interacting case, including the degenerate
limits of both Fermi and Bose gases. In the second part we discuss the
variational approach to the thermal Hartree-Fock approximation [93] for
interacting systems as well as, on some examples, its stability.

Quantum spins are discussed in Chapter 6 by generalizing the Gaussian
representation of § 3.2, which leads to a path-integral representation in
Euclidean time for the partition function of interacting spin systems, of
which the Gaussian representation of § 3.2 is shown to be the classical limit.
We discuss then the static and the mean-field (saddle-point) ap‘proximatioris
to the path-integral, as well as the large spin limit, pointing out.in which
limits the full quantum expressions reduce to the classical ones.

The last four chapters of the book (Chapters 7, 8, 9 and 10) deal with
the broad subject of phase transitions and critical phenomena. § 7.1 con-
tains an overview of the basic facts concerning phase transitions, with a
special emphasis on continuous or “second order” transitions. There we
discuss the connections between fluctuations and correlations in the vicin-
ity of critical points, as well as what is to some extent, together with the
van der Waals theory, the prototype of all mean-field theories, namely the
Ornstein-Zernike theory of classical fluids, pointing out that the mean-field
analysis of spin systems of § 3.3 can be considered also as an Ornstein-
Zernike-type theory. In § 7.2 we have collected together a number of exact
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results that serve to set the stage for a rigorous description of phase tran-
sitions. The Section begins with a discussion of the classical theorems of
Lee and Yang and of their implications, chiefly that no rigorous descrip-
tion of phase transitions can be given without performing carefully the
thermodynamic limit. Making contact with the discussion, limited to a
classical context, of § 3.5, we resume then the discussion, in a quantum
context now, of the phenomenon of SSB, the Bogoliubov inequality and the
Mermin-Wagner theorem. A brief discussion follows of how phase transi-
tions can be described [64] within the framework of the algebraic approach
to Quantum Statistical Mechanics.

Chapter 8 begins with a detailed discussion of some exactly soluble mod-
els, namely the Gaussian model (including a discussion of the continuum
limit of the latter), the Berlin-Kac spherical model and the 2D Ising model.

Critical exponents are introduced and discussed in § 8.2. There we
discuss some rigorous thermodynamic inequalities among the critical ex-
ponents, together with Widom’s generalized homogeneity assumptions for
the singular part(s) of the free energy and their consequences, namely the
turning of the inequalities into equalities, the “scaling laws”.

The Landau theory of phase transitions is discussed in § 8.3. Although
the main emphasis is there on second-order transitions, we discuss also the
occurrence (when the symmetry of the order parameter permits) of first-
order transitions as well as the occurrence of tricritical points. '

A preliminary knowledge of the Landau theory paves of course the way
to the introduction of the Ginzburg-Landau theory of superconductivity
which is the topic covered in § 9.1. After a short introduction to the basic
phenomenology of superconductivity (with emphasis on the Meissner effect)
and a brief discussion of the London theory, the Ginzburg-Landau theory
is discussed at some length in the remainder of the Section, with some
emphasis on its topological implications that lead to flux quantization. The
following § 9.2 contains a partly related and admittedly short discussion of
superfluidity.

Chapter 10 begins with a brief recollection, in § 10.1, of the basic facts
concerning phase transitions that have been established in Chapters 7 and
8, followed, in § 10.2, by a description of the conceptual precursor of the
Renormalization Group, i.e. Kadanoff’s “block scaling” or “decimation”
procedure. The essential ingredients of the RG are introduced in § 10.3.
Deferring some technical details to Appendices C and D, § 10.4 is devoted to
the full description of how the RG operates in real space, with applications
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to Ising spins, while Wilson’s approach to the RG in momentum space and
the expansion in the space dimension considered as a continuous parameter
(the “e-expansion”) are discussed, and applied to Landau-type models, in
§ 10.5. The Section, as well as the book, closes with some general remarks
on the RG and comments on more recent developments.

This is all what this book is about. Many important topics are missing
from it. To quote perhaps the most conspicuous one, we have not dis-
cussed the approach to equilibrium via master equation and/or the BBKY
hierarchy (see, e.g., Ref. [37] for this), nor have we discussed Boltzmann's
transport equation for dilute gases, the “Stosszahlansatz” and the various
paradoxes that were raised against itS. .

A good elementary account of Boltzmann'’s equation can be found, e.g.,
in the introductory chapters of both the old and the new editions of Huang’s
book. Also, we did not touch upon the far more difficult problems connected
with genuine non equilibrium (Thermodynamics and) Statistical Mechan-
ics. As to the latter, they constitute an entirely different (though related,
of course) field, and should simply be the subject of a different book and/or
a different course. As to the former, it represents an approach to Statistical
Mechanics that is complementary to the one that has been adopted here.
So, although completeness might have required an accurate discussion of
this approach as well as a critical comparison of the relative merits of both,
this would have made the book to grow beyond any reasonable size. Indi-
vidual choices are of course always subjective to a greater or lesser extent.
Having to perform one, we decided to stick to the perhaps more traditional
approach to Statistical Mechanics that goes through ergodic and ensemble
theories. ‘

We hope that this book will be of some usefulness for young researchers
who are willing to refresh and (hopefully) improve on their undergraduate
knowledge of Statistical Mechanics as well as to colleagues who may have
to teach a course on the same subject.

Bologna and Genova, December 2000

SThese are the well known paradoxes of reversibility and recurrence due to Loschmidt and
Zermelo respectively [67]. The rebuttal of the former relies on probabilistic arguments,
that of the latter on realistic estimates of the time length of “Poincare’s cycles”. Strictly
speaking, that a function such as Boltzmann’s $-function, $ = $(g,p) enjoying the
property of being a smooth function on phase space and such that: d$y/dt < 0 for all
times cannot exist in a strict sense can be inferred also from a theorem by H. Poincare’
[116] stating that, at least for compact energy surfaces, no smooth function on phase
space can grow or decrease indefinitely.
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