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ABSTRACT

This book focuses on the core question of the necessary architectural support provided by hardware
to efficiently run virtual machines, and of the corresponding design of the Aypervisors that run
them. Virtualization is still possible when the instruction set architecture lacks such support, but
the hypervisor remains more complex and must rely on additional techniques.

Despite the focus on architectural support in current architectures, some historical perspec-
tive is necessary to appropriately frame the problem. The first half of the book provides the histor-
ical perspective of the theoretical framework developed four decades ago by Popek and Goldberg.
It also describes earlier systems that enabled virtualization despite the lack of architectural support
in hardware.

As is often the case, theory defines a necessary—but not sufficient—set of features, and
modern architectures are the result of the combination of the theoretical framework with insights
derived from practical systems. The second half of the book describes state-of-the-art support for
virtualization in both x86-64 and ARM processors. This book includes an in-depth description
of the CPU, memory, and 1/O virtualization of these two processor architectures, as well as case
studies on the Linux/KVM, VMware, and Xen hypervisors. It concludes with a performance
comparison of virtualization on current-generation x86- and ARM-based systems across multiple
hypervisors.

KEYWORDS

computer architecture, virtualization, virtual machine, hypervisor, dynamic binary
translation
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Preface

“Virtual machines have finally arrived. Dismissed for a number of years as
merely academic curiosities, they are now seen as cost-effective techniques
for organizing computer systems resources to provide extraordinary system
flexibility and support for certain unique applications”.

Robert. P. Goldberg, IEEE Computer, 1974 [78]

The academic discipline of computer systems research, including computer architecture, is in
many aspects more tidal than linear: specific ingrained, well-understood techniques lose their
relevance as tradeoffs evolve. Hence, the understanding of these techniques then ebbs from the
collective knowledge of the community. Should the architectural tide later flow in the reverse
direction, we have the opportunity to reinvent—or at least appreciate once more—old concepts
all over again.

The history of virtualization is an excellent example of this cycle of innovation. The ap-
proach was popular in the early era of computing, as demonstrated from the opening quote. At
high tide in the 1970s, hundreds of papers were written on virtualization with conferences and
workshops dedicated to the topic. The era established the basic principles of virtualization and en-
tire compute stacks—hardware, virtual machine monitors, and operating systems—were designed
to efficiently support virtual machines. However, the tide receded quickly in the early 1980s as
operating systems matured; virtual machines were soon strategically discarded in favor of a more
operating system-centric approach to building systems.

Throughout the 1980s and 1990s, with the appearance of the personal computer and client/
server era, virtual machines were largely relegated to a mainframe-specific curiosity. For example,
the processors developed in that era (MIPS, Sparc, x86), were not explicitly designed to provide
architectural support for virtualization, since there was no obvious business requirement to main-
tain support for virtual machines. In addition, and in good part because of the ebb of knowledge
of the formal requirements for virtualization, many of these architectures made arbitrary design
decisions that violated the basic principles established a decade earlier.

For most computer systems researchers of the open systems era, raised on UNIX, RISC,
and x86, virtual machines were perceived to be just another bad idea from the 1970s. In 1997,
the Disco [44] paper revisited virtual machines with a fresh outlook, specifically as the founda-
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tion to run commodity operating systems on scalable multiprocessors. In 1999, VMware released
VMware Workstation 1.0 [45], the first commercial virtualization solution for x86 processors.

At the time, researchers and commercial entities started building virtual machines solu-
tions for desktops and servers. A few years later, the approach was introduced to mobile plat-
forms. Disco, VMware Workstation, VMware ESX Server [177], VirtualPC [130], Xen [27],
Denali [182], and Cells [16], were all originally designed for architectures that did no# provide
support for virtualization. These different software systems each took a different approach to work
around the limitations of the hardware of the time. Although processor architectures have evolved
to provide hardware support for virtualization, many of the key innovations of that era such as
hosted architectures [162], paravirtualization [27, 182], live migration [51, 135], and memory
ballooning [177], remain relevant today, and have a profound impact on computer architecture
trends.

Clearly, the virtualization tide has turned, to the point that it is once more a central driver of
innovation throughout the industry, including system software, systems management, processor
design, and 1/O architectures. As a matter of fact, the exact quote from Goldberg’s 1974 paper
would have been equally timely 30 years later: Intel introduced its first-generation hardware sup-
port for virtual machines in 2004. Every maintained virtualization solution, including VMware
Workstation, ESX Server, and Xen, quickly evolved to leverage the benefits of hardware support
for virtualization. New systems were introduced that assumed the existence of such hardware sup-
port as a core design principle, notably KVM [113]. With the combined innovation in hardware
and software and the full support of the entire industry, virtual machines quickly became central
to IT organizations, where they were used among other things to improve IT efficiency, sim-
plify provisioning, and increase availability of applications. Virtual machines were also proposed
to uniquely solve hard open research questions, in domains such as live migration [51, 135] and
security [73]. Within a few years, they would play a central role in enterprise datacenters. For
example, according to the market research firm IDC, since 2009 there are more virtual machines
deployed than physical hosts [95].

Today, virtual machines are ubiquitous in enterprise environments, where they are used to
virtualize servers as well as desktops. They form the foundation of all Infrastructure-as-a-Service
(IAAS) clouds, including Amazon EC2, Google CGE, Microsoft Azure, and OpenStack. Once
again, the academic community dedicates conference tracks, sessions, and workshops to the topic
(e.g., the annual conference on Virtual Execution Environments (VEE)).

ORGANIZATION OF THIS BOOK

This book focuses on the core question of the necessary architectural support provided by hardware
to efficiently run virtual machines. Despite the focus on architectural support in current architec-
tures, some historical perspective is necessary to appropriately frame the problem. Specifically,
this includes both a theoretical framework, and a description of the systems enabling virtualiza-
tion despite the lack of architectural support in hardware. As is often the case, theory defines
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a necessary—but not sufficient—set of features, and modern architectures are the result of the

combination of the theoretical framework with insights derived from practical systems.
'The book is organized as follows.

* Chapter 1 introduces the fundamental definitions of the abstraction (“virtual machines”),
the run-time (“virtual machine monitors”), and the principles used to implement them.

* Chapter 2 provides the necessary theoretical framework that defines whether an instruction
set architecture (ISA) is virtualizable or not, as formalized by Popek and Goldberg [143].

* Chapter 3 then describes the first set of systems designed for platforms that failed the
Popek/Goldberg test. These systems each use a particular combination of workarounds to
run virtual machines on platforms not designed for them. Although a historical curiosity
by now, some of the techniques developed during that era remain relevant today.

* Chapter 4 focuses on the architectural support for virtualization of modern x86-64 proces-
sors, and in particular Intel's VT-x extensions. It uses KVM as a detailed case study of a
hypervisor specifically designed to assume the presence of virtualization features in proces-
sors.

* Chapter 5 continues the description of x86-64 on the related question of the architectural
support for MMU virtualization provided by extended page tables (also known as nested
page tables).

* Chapter 6 closes the description of x86-64 virtualization with the various forms of I/0
virtualization available. The chapter covers key concepts such as I/O emulation provided by
hypervisors, paravirtual I/O devices, pass-through I/O with SR-IOV, IOMMUs, and the
support for interrupt virtualization.

* Chapter 7 describes the architectural support for virtualization of the ARM processor fam-
ily, and covers the CPU, MMU, and I/O considerations. The chapter emphasizes some of
the key differences in design decisions between x86 and ARM.

* Chapter 8 compares the performance and overheads of virtualization extensions on x86 and

on ARM.

In preparing this book, the authors made some deliberate decisions. First, for brevity, we focused
on the examples of architectural support for virtualization, primarily around two architectures:
x86-64 and ARM. Interested readers are hereby encouraged to study additional instruction set ar-
chitectures. Among them, IBM POWER architecture, with its support for both hypervisor-based
virtualization and logical partitioning (LPAR), is an obvious choice [76]. The SPARC architec-
ture also provides built-in support for logical partitioning, called logical domains [163]. We also
omit any detailed technical description of mainframe and mainframe-era architectures. Readers
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interested in that topic should start with Goldberg’s survey paper [78] and Creasy’s overview of
the IBM VM/370 system [54].

Second, we focused on mainstream (i.e., traditional) forms of virtual machines and the
construction of hypervisors in both the presence or the absence of architectural support for virtu-
alization in hardware. This focus is done at the expense of a description of some more advanced
research concepts. For example, the text does not discuss recursive virtual machines [33, 158],
the use of virtualization hardware for purposes other than running traditional virtual ma-

chines [24, 29, 31, 43, 88], or the emerging question of architectural support for containers such
as Docker [129].

AUTHORS’ PERSPECTIVES

'This book does not attempt to cover all aspects of virtualization. Rather, it mostly focuses on
the key question of the interaction between the underlying computer architecture and the sys-
tems software built on top of it. It also comes with a point of view, based on the authors’ direct
experiences and perspectives on the topic.

Edouard Bugnion was fortunate to be part of the Disco team as a graduate student. Because
of the stigma associated with virtual machines of an earlier generation, we named our prototype
in reference to the questionable musical contribution of that same decade [55], which was then
coincidentally making a temporary comeback. Edouard later co-founded VMware, where he was
one of the main architects and implementers of VMware Workstation, and then served as its Chief
Technology Officer. In 2005, he co-founded Nuova Systems, a hardware company premised on
providing architectural support for virtualization in the network and the 1/O subsystem, which
became the core of Cisco’s Data Center strategy. More recently, having returned to academia as a
professor at Ecole polytechnique fédérale de Lausanne (EPFL), Edouard is now involved in the
IX project [30, 31, 147] which leverages virtualization hardware and the Dune framework [29]
to build specialized operating systems.

Jason Nieh is a Professor of Computer Science at Columbia University, where he has led
a wide range of virtualization research projects that have helped shape commercial and educa-
tional practice. Zap [138], an early lightweight virtual machine architecture that supported mi-
gration, led to the development of Linux namespaces and Linux containers, as well as his later
work on Cells [16, 56], one of the first mobile virtualization solutions. Virtual Layered File Sys-
tems [144, 145] introduced the core ideas of layers and repositories behind Docker and CoreOS.
KVM/ARM [60] is widely deployed and used as the mainline Linux ARM hypervisor, and
has led to improvements in ARM architectural support for virtualization [58]. MobiDesk [26],
THINC [25], and other detailed measurement studies helped make the case for virtual desktop
infrastructure, which has become widely used in industry. A dedicated teacher, Jason was the first
to introduce virtualization as a pedagogical tool for teaching hands-on computer science courses,
such as operating systems [136, 137], which has become common practice in universities around

the world.
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Dan Tsafrir is an Associate Professor at the Technion—Israel Institute of Technology,
where he regularly appreciates how fortunate he is to be working with brilliant students on cool
projects for a living. Some of these projects drive state-of-the-art virtualization forward. For
example, VIOMMU showed for the first time how to fully virtualize I/O devices on separate
(side)cores without the knowledge or involvement of virtual machines, thus eliminating seem-
ingly inherent trap-and-emulate virtualization overheads [12]. vRIO showed that such sidecores
can in fact be consolidated on separate remote servers, enabling a new kind of datacenter-scale I/O
virtualization model that is cheaper and more performant than existing alternatives [116]. ELI
introduced software-based exitless interrupts—a concept recently adopted by hardware—which,
after years of efforts, finally provided bare-metal performance for high-throughput virtualization
workloads [13, 80]. VSwapper showed that uncooperative swapping of memory of virtual ma-
chines can be made efficient, despite the common belief that this is impossible [14]. Virtual CPU
validation showed how to uncover a massive amount of (confirmed and now fixed) hypervisor bugs
by applying Intel’s physical CPU testing infrastructure to the KVM hypervisor [15]. EIOVAR
and its successor projects allowed for substantially faster and safer IOMMU protection and found
their way into the Linux kernel [126, 127, 142]. NPFs provide page-fault support for network
controllers and are now implemented in production Mellanox NICs [120].

TARGET AUDIENCE

This book is written for researchers and graduate students who have already taken a basic course
in both computer architecture and operating systems, and who are interested in becoming fluent
with virtualization concepts. Given the recurrence of virtualization in the literature, it should be
particularly useful to new graduate students before they start reading the many papers treating a
particular sub-aspect of virtualization. We include numerous references of widely read papers on
the topic, together with a high-level, modern commentary on their impact and relevance today.

Edouard Bugnion, Jason Nieh, and Dan Tsafrir
January 2017
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