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Preface

Overview

In formulating a stochastic model to describe a real phenomenon, it used to be
that one compromised between choosing a model that is a realistic replica of the
actual situation and choosing one whose mathematical analysis is tractable. That
is, there did not seem to be any payoff in choosing a model that faithfully con-
formed to the phenomenon under study if it were not possible to mathematically
analyze that model. Similar considerations have led to the concentration on asymp-
totic or steady-state results as opposed to the more useful ones on transient time.
However, the relatively recent advent of fast and inexpensive computational power
has opened up another approach — namely, to try to model the phenomenon as
faithfully as possible and then to rely on a simulation study to analyze it.

In this text we show how to analyze a model by use of a simulation study. In
particular, we first show how a computer can be utilized to generate random (more
precisely, pseudorandom) numbers, and then how these random numbers can be
used to generate the values of random variables from arbitrary distributions. Using
the concept of discrete events we show how to use random variables to generate the
behavior of a stochastic model over time. By continually generating the behavior of
the system we show how to obtain estimators of desired quantities of interest. The
statistical questions of when to stop a simulation and what confidence to place in
the resulting estimators are considered. A variety of ways in which one can improve
on the usual simulation estimators are presented. In addition, we show how to use
simulation to determine whether the stochastic model chosen is consistent with a
set of actual data.

New to this Edition

Expositional and notational changes throughout the text.
New exercises in almost all chapters.
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A new section (4.6) on generating random vectors, with an example illustrating
how to generate a multinomial vector.

A new section (6.6) on using discrete events to simulate an insurance risk model.

A new section (8.7) on using simulation to efficiently evaluate the expected price
of an exotic option. Various variance reddction methods are combined to obtain
an efficient procedure for evaluating these options, which are of importance in
finance and insurance.

A new section (11.4) on using simulation to estimate first passage time distributions
of a Markov chain, a problem with a variety of applications in almost all areas
of applied probability. The method utilized is also applied to deriving the tail
probabilities of joint distributions, such as the bivariate normal distribution.

. A new section (11.5) on coupling from the past, a techique that allows one to sim-
ulate a random variable whose distribution is that of the stationary distribution
of a Markov chain.

A new example (8m) on using simulation to estimate tail probabilities of compound
random variables. Such random variables are of great importance in insurance.

There is new material in Section 8.5 on using importance sampling to estimate tail
probabilities.

Section 10.3 on the Gibbs sampler has been rewritten. A new example concerned
with generating a multinomial vector conditional on the event that all outcomes
occur at least once is presented.

Chapter Descriptions

The successive chapters in this text are as follows. Chapter 1 is an introductory
chapter which presents a typical phenomenon that is of interest to study. Chapter 2
is a review of probability. Whereas this chapter is self-contained and does not
assume the reader is familiar with probability, we imagine that it will indeed be a
review for most readers. Chapter 3 deals with random numbers and how a variant
of them (the so-called pseudorandom numbers) can be generated on a computer.
The use of random numbers to generate discrete and then continuous random
variables is considered in Chapters 4 and 5.

Chapter 6 presents the discrete event approach to track an arbitrary system as
it evolves over time. A variety of examples — relating to both single and multiple
server queueing systems, to an insurance risk model, to an inventory system, to
a machine repair model, and to the exercising of a stock option — are presented.
Chapter 7 introduces the subject matter of statistics. Assuming that our average
reader has not previously studied this subject, the chapter starts with very basic
concepts and ends by introducing the bootstrap statistical method, which is quite
useful in analyzing the results of a simulation.

Chapter 8 deals with the important subject of variance reduction. This is an
attempt to improve on the usual simulation estimators by finding ones having the
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same mean and smaller variances. The chapter begins by introducing the tech-
nique of using antithetic variables. We note (with a proof deferred to the chapter’s
appendix) that this always results in a variance reduction along with a compu-
tational savings when we are trying to estimate the expected value of a function
that is monotone in each of its variables. We then introduce control variables and
illustrate their usefulness in variance reduction. For instance, we show how con-
trol variables can be effectively utilized in analyzing queueing systems, reliability
systems, a list reordering problem, and blackjack. We also indicate how to use
regression packages to facilitate the resulting computations when using control
variables. Variance reduction by use of conditional expectations is then consid-
ered. Its use is indicated in examples dealing with estimating 7, and in analyzing
finite capacity queueing systems. Also, in conjunction with a control variate, con-
ditional expectation is used to estimate the expected number of events of a renewal
process by some fixed time. The use of stratified sampling as a variance reduction
tool is indicated in examples dealing with queues with varying arrival rates and
evaluating integrals. The relationship between the variance reduction techniques
of conditional expectation and stratified sampling is explained and illustrated in
the estimation of the expected return in video poker. The technique of importance
sampling is next considered. We indicate and explain how this can be an extremely
powerful variance reduction technique when estimating small probabilities. In do-
ing so, we introduce the concept of tilted distributions and show how they can be
utilized in an importance sampling estimation of a small convolution tail probabil-
ity. Applications of importance sampling to queueing, random walks, and random
permutations, and to computing conditional expectations when one is conditioning
on a rare event are presented. The final variance reduction technique of Chapter 8
relates to the use of a common stream of random numbers. An application to
valuing an exotic stock option that utilizes a combination of variance reduction
techniques is presented in Section 8.7.

Chapter 9 is concerned with statistical validation techniques, which are sta-
tistical procedures that can be used to validate the stochastic model when some
real data are available. Goodness of fit tests such as the chi-square test and the
Kolmogorov—Smirnov test are presented. Other sections in this chapter deal with
the two-sample and the n-sample problems and with ways of statistically testing
the hypothesis that a given process is a Poisson process.

Chapter 10 is concerned with Markov chain Monte Carlo methods. These are
techniques that have greatly expanded the use of simulation in recent years. The
standard simulation paradigm for estimating 8 = E[h(X)], where X is a random
vector, is to simulate independent and identically distributed copies of X and
then use the average value of 4(X) as the estimator. This is the so-called “raw”
simulation estimator, which can then possibly be improved upon by using one or
more of the variance reduction ideas of Chapter 8. However, in order to employ this
approach it is necessary both that the distribution of X be specified and also that
we be able to simulate from this distribution. Yet, as we see in Chapter 10, there
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are many examples where the distribution of X is known but we are not able to
directly simulate the random vector X, and other examples where the distribution
is not completely known but is only specified up to a multiplicative constant. Thus,
in either case, the usual approach to estimating @ is not available. However, a new
approach, based on generating a Markov chain whose limiting distribution is the
distribution of X, and estimating 8 by the average of the values of the function h
evaluated at the successive states of this chain, has become widely used in recent
years. These Markov chain Monte Carlo methods are explored in Chapter 10.
We start, in Section 10.2, by introducing and presenting some of the properties
of Markov chains. A general technique for generating a Markov chain having a
limiting distribution that is specified up to a multiplicative constant, known as the
Hastings—Metropolis algorithm, is presented in Section 10.3, and an application
to generating a random element of a large “combinatorial” set is given. The most
widely used version of the Hastings—Metropolis algorithm is known as the Gibbs
sampler, and this is presented in Section 10.4. Examples are discussed relating to
such problems as generating random points in a region subject to a constraint that
no pair of points are within a fixed distance of each other, to analyzing product
form queueing networks, to analyzing a hierarchical Bayesian statistical model for
predicting the numbers of home runs that will be hit by certain baseball players,
and to simulating a multinomial vector conditional on the event that all outcomes
occur at least once. An application of the methods of this chapter to deterministic
optimization problems, called simulated annealing, is presented in Section 10.5,
and an example concerning the traveling salesman problem is presented. The final
section of Chapter 10 deals with the sampling importance resampling algorithm,
which is a generalization of the acceptance-rejection technique of Chapters 4
and 5. The use of this algorithm in Bayesian statistics is indicated.

Chapter 11 deals with some additional topics in simulation. In Section 11.1
we learn of the alias method which, at the cost of some setup time, is a very
efficient way to generate discrete random variables. Section 11.2 is concerned
with simulating a two-dimensional Poisson process. In Section 11.3 we present
an identity concerning the covariance of the sum of dependent Bernoulli random
variables and show how its use can result in estimators of small probabilities
having very low variances. Applications relating to estimating the reliability of a
system, which appears to be more efficient that any other known estimator of a
small system reliability, and to estimating the probability that a specified pattern
occurs by some fixed time, are given. Section 11.4 presents an efficient technique
to employ simulation to estimate first passage time means and distributions of a
Markov chain. An application to computing the tail probabilities of a bivariate
normal random variable is given. Section 11.5 presents the coupling from the
past approach to simulating a random variable whose distribution is that of the
stationary distribution of a specified Markov chain.
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Introduction

Consider the following situation faced by a pharmacist who is thinking of setting up
a small pharmacy where he will fill prescriptions. He plans on opening up at 9 A.M.
every weekday and expects that, on average, there will be about 32 prescriptions
called in daily before 5 PM. His experience indicates that the time that it will
take him to fill a prescription, once he begins working on it, is a random quantity
having a mean and standard deviation of 10 and 4 minutes, respectively. He plans
on accepting no new prescriptions after 5 PM., although he will remain in the shop
past this time if necessary to fill all the prescriptions ordered that day. Given this
scenario the pharmacist is probably, among other things, interested in the answers
to the following questions:

1. What is the average time that he will depart his store at night?

2. What proportion of days will he still be working at 5:30 PM.?

3. What is the average time it will take him to fill a prescription (taking into
account that he cannot begin working on a newly arrived prescription until
all earlier arriving ones have been filled)?

4. What proportion of prescriptions will be filled within 30 minutes?

. If he changes his policy on accepting all prescriptions between 9 AM. and
5 PM., but rather only accepts new ones when there are fewer than five
prescriptions still needing to be filled, how many prescriptions, on average,
will be lost?

6. How would the conditions of limiting orders affect the answers to questions

1 through 47

W

In order to employ mathematics to analyze this situation and answer the ques-
tions, we first construct a probability model. To do this it is necessary to make
some reasonably accurate assumptions concerning the preceding scenario. For in-
stance, we must make some assumptions about the probabilistic mechanism that
describes the arrivals of the daily average of 32 customers. One possible assumption
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might be that the arrival rate is, in a probabilistic sense, constant over the day,
whereas a second (probably more realistic) possible assumption is that the arrival
rate depends on the time of day. We must then specify a probability distribution
(having mean 10 and standard deviation 4) for the time it takes to service a pre-
scription, and we must make assumptions about whether or not the service time
of a given prescription always has this distribution or whether it changes as a
function of other variables (e.g., the number of waiting prescriptions to be filled
or the time of day). That is, we must make probabilistic assumptions about the
daily arrival and service times. We must also decide if the probability law de-
scribing a given day changes as a function of the day of the week or whether
it remains basically constant over time. After these assumptions, and possibly
others, have been specified, a probability model of our scenario will have been
constructed.

Once a probability model has been constructed, the answers to the questions
can, in theory, be analytically determined. However, in practice, these questions
are much too difficult to determine analytically, and so to answer them we usually
have to perform a simulation study. Such a study programs the probabilistic mech-
anism on a computer, and by utilizing “random numbers” it simulates possible
occurrences from this model over a large number of days and then utilizes the the-
ory of statistics to estimate the answers to questions such as those given. In other
words, the computer program utilizes random numbers to generate the values of
random variables having the assumed probability distributions, which represent
the arrival times and the service times of prescriptions. Using these values, it de-
termines over many days the quantities of interest related to the questions. It then
uses statistical techniques to provide estimated answers — for example, if out of
1000 simulated days there are 122 in which the pharmacist is still working at 5:30,
we would estimate that the answer to question 2 is 0.122.

In order to be able to execute such an analysis, one must have some knowledge of
probability so as to decide on certain probability distributions and questions such
as whether appropriate random variables are to be assumed independent or not.
A review of probability is provided in Chapter 2. The bases of a simulation study
are so-called random numbers. A discussion of these quantities and how they are
computer generated is presented in Chapter 3. Chapters 4 and 5 show how one can
use random numbers to generate the values of random variables having arbitrary
distributions. Discrete distributions are considered in Chapter 4 and continuous
ones in Chapter 5. After completing Chapter 5, the reader should have some in-
sight into the construction of a probability model for a given system and also how
to use random numbers to generate the values of random quantities related to this
model. The use of these generated values to track the system as it evolves con-
tinuously over time — that is, the actual simulation of the system —is discussed
in Chapter 6, where we present the concept of “discrete events” and indicate how
to utilize these entities to obtain a systematic approach to simulating systems.
The discrete event simulation approach leads to a computer program, which can
be written in whatever language the reader is comfortable in, that simulates the
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system a large number of times. Some hints concerning the verification of this
program — to ascertain that it is actually doing what is desired — are also given
in Chapter 6. The use of the outputs of a simulation study to answer probabilistic
questions concerning the model necessitates the use of the theory of statistics, and
this subject is introduced in Chapter 7. This chapter starts with the simplest and
most basic concepts in statistics and continues toward the recent innovation of
“bootstrap statistics,” which is quite useful in simulation. Our study of statistics
indicates the importance of the variance of the estimators obtained from a simu-
lation study as an indication of the efficiency of the simulation. In particular, the
smaller this variance is, the smaller is the amount of simulation needed to obtain
a fixed precision. As a result we are led, in Chapter 8, to ways of obtaining new
estimators that are improvements over the raw simulation estimators because they
have reduced variances. This topic of variance reduction is extremely important
in a simulation study because it can substantially improve its efficiency. Chapter 9
shows how one can use the results of a simulation to verify, when some real-life
data are available, the appropriateness of the probability model (which we have
simulated) to the real-world situation. Chapter 10 introduces the important topic
of Markov chain Monte Carlo methods. The use of these methods has, in recent
years, greatly expanded the class of problems that can be attacked by simulation.
Chapter 11 considers a variety of additional topics.

Exercises

1. The following data yield the arrival times and service times that each customer
will require, for the first 13 customers at a single server system. Upon arrival, a
customer either enters service if the server is free or joins the waiting line. When
the server completes work on a customer, the next one in line (i.e., the one who
has been waiting the longest) enters service.

Arrival Times: 12 31 63 95 99 154 198 221 304 346 411 455 537
Service Times: 40 32 55 48 18 50 47 18 28 54 40 72 12

(a) Determine the departure times of these 13 customers.

(b) Repeat (a) when there are two servers and a customer can be served by
either one.

(c) Repeat (a) under the new assumption that when the server completes a
service, the next customer to enter service is the one who has been waiting the
least time.

2. Consider a service station where customers arrive and are served in their order
of arrival. Let A,, S,, and D, denote, respecti{/ely, the arrival time, the service
time, and the departure time of customer n. Suppose there is a single server and
that the system is initially empty of customers.
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(a) With Dy = 0, argue that forn > 0

D, — S, = Maximum {A,, D,_}

(b) Determine the corresponding recursion formula when there are two servers.
(c) Determine the corresponding recursion formula when there are k servers.
(d) Write a computer program to determine the departure times as a function
of the arrival and service times and use it to check your answers in parts (a)
and (b) of Exercise 1.



Elements of Probability

2.1 Sample Space and Events

Consider an experiment whose outcome is not known in advance. Let S, called
the sample space of the experiment, denote the set of all possible outcomes. For
example, if the experiment consists of the running of a race among the seven horses
numbered 1 through 7, then

S = {all orderings of (1,2, 3,4, 5,6, 7)}

The outcome (3,4, 1,7, 6, 5, 2) means, for example, that the number 3 horse came
in first, the number 4 horse came in second, and so on.

Any subset A of the sample space is known as an event. That is, an event is
a set consisting of possible outcomes of the experiment. If the outcome of the
experiment is contained in A, we say that A has occurred. For example, in the
above, if

A = {all outcomes in S starting with 5}

then A is the event that the number 5 horse comes in first.

For any two events A and B we define the new event A U B, called the union
of A and B, to consist of all outcomes that are either in A or B or in both A
and B. Similarly, we define the event AB, called the intersection of A and B, to
consist of all outcomes that are in both A and B. That is, the event A U B occurs
if either A or B occurs, whereas the event AB occurs if both A and B occur. We
can also define unions and intersections of more than two events. In particular, the
union of the events Ay, ..., A, —designated by U , A; —is defined to consist
of all outcomes that are in any of the A;. Similarly, the intersection of the events
Ay, ..., A, —designated by A A, - -- A, —is defined to consist of all outcomes
that are in all of the A;.



