|Math in Economics |
| EHE wk |

B E N BKF AL




FARE s

TEARXFME | |
s AT




EHERRE (CIP) HiE

BB/ FHERE.

dbE. FEARKFB R, 2008
IR AERFRAT @GEURD

ISBN 978-7-300-09635-3

e
. BTFRE B A A — 3L
. F224.0

2498545+

eh E B A< B H4f CIP $di# 7 (2008) %5 131461 5

ARAEHKFRE GER)

ZuE
EHE RE
HEET TEARKSEHE
# #t JEETRRAE NS BREC4RAD 100080
B i 010-62511242 (EHE) 010 - 62511398 (JREH)
010 - 82501766 (HEMAER) 010 - 62514148 (JTH#R)
010 - 62515195 CEFTAFD 010 - 62515275 (VSAREER)
[ #t  http://www. crup. com. cn
http: //www. ttrnet. com (A KXFEHFM)
& #H FEHE
BB R JtEFRBERARAH
M K 170 mmX228 mm 16 FFA B & 200849 A% 1R
21 * 13@m1 e W 2008 4E 9 A S 1 KEPRI
= ¥ 239 000 Z # 23.0030

IBRFTH WMARILIL EP3 A DIMER



=
)
=
=

WAL, BB R A BN HA EARBE AR, AR AHE
. MX—EXTEE. &3 W, BRATHERNFELNER, £T
BB A AR T 8, M ABTRERR, By —Ba ]
BE—THRREERE. ABERXRFBRMEEHM, BENTERKK
MEAE g | ARG A AR R AR B ER . NA RS R T
HAREES ., Bk, BB, BRI TRSE.

B2 T EEREERECPRERE TR, XERFERHT T ER
ABTHE, B oBHRECESTPHEAES, AEEE. Fo. W8,
B, M. ik, RERBASIAE. BEEAR RN AER, &
mEERE . M. BN, BAAERE &R, Lagrange 2.
Kuhn-Tucker FEAALEHE, BNEFEYRIHBMR, EPiHeE B
[ FEALAEAL R S ) AEREALAEAL , B T LR WA sh AR E R, 1R
MiEHEY: . Lagrange 3. Hamilton 5%, Bellman 572, Euler 512, #
BHELAMHAAES, FREHR-NEMSTBEALETBRE. KETE
WbRERR S AR R A . BE, EAERREEZS T BAMREELS T
B, AR Ak,

W L EARA N EB A RE WBEEEM , BB REXREM T
HENE, BEAERMUEIES. EEREECSZENHZLE, FERMT
AR sb T, BT TEHEBUTHSAREACHTE, ERE LHAH
RS, AFUTTLUMEABE BARARENRALRNSEZ S, G MER
¥ PDF CEEARRXFIBEM TR E: www. bm. ust. hk/~ sswang/math-
book/, F35ME A BB TR FAAD FE BT Rt P RS 7E bR R B .



EHAE, IWHEHFMA. 1985 F5 L TR KFE, REPEW 22060, I
BARAEPERWIN. EHEMEREBREREI T 191 FREFEHL¥
fiL. 19911993 FEGIEME KRR M T KL R HT. 1993 FES
EHEBRHAEZFRNEFRLY. A4S, ORBEIBHNE¥ S5
RIfE. ZEER—RTYLERSZHRBENZRLE, HEF (HRE
PrEmin) SFEE. GPKFREBRB KER¥E (Franklin) #2X,
AT REANE R RER TR HERHE.



Preface

The target. This book covers math at the senior undergraduate, Master’s
and Ph. D levels for students in business schools and economics departments.
Tt concisely covers main math knowledge and tools useful for business and e-
conomics studies, including matrix analysis, basic math concepts, general
optimization, dynamic optimization, and ordinary differential equations. Bas- ’
ic math tools, particularly optimization tools, are essential for students in a
business school, especially for students in economics, accounting, finance,
management, and marketing. Itisa standard practice nowadays that a gradu-
ate program in a business school requires a short and intense course in math
just before or immediately after the students enter the program. This book
intends to be used in such a course,

The coverage. Chapter 1 focuses on the part of linear algebra that is es-
sential for business studies: matrix analysis. It covers a wide range of sub-
jects on matrices. Chapter 2 covers basic concepts in real analysis, including
set, sequence, convergence, continuity, differentiation, homogeneity, in-
verse functions, and fixed points. Chapter 3 covers general topics in optimi-
zation, including definite matrices, concavity, quasi-concavity, uncon-
strained and constrained optimization, Lagrange theorem, Kuhn-Tucker the-
orem, and Envelope theorem. Chapter 4 covers dynamic optimization, focu-
sing on discrete-time stochastic optimization and continuous-time determinis-
tic optimization. It covers several popular approaches in dynamic optimiza-
tion, including backward induction, Lagrange method, Hamilton method,

Bellman equation, Euler equation, transversality conditions, and phase dia-
3
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gram. Chapter 5 covers first-order differential equations and linear equation
systems. It introduces various ways in solving first-order differential equa-
tions, the standard method in solving linear equations, and the Laplace
transformation. Finally, Chapter 6 covers first-order difference equations and
linear difference equations. It introduces the iterative method and z-transfor-
mation.

Special features of this book. There are quite a few math books for busi-
ness studies. In terms of its contents, this book covers the necessary topics
for such a book. The emphasis of this book is optimization, which occupies
more than half of the book. This book is intended to be concise with many
details deliberately left out. Such a book is good for students who will learn
most of the details in class. It is also good for instructors who would want to
fill in the details by themselves in their own words. This book can also serve
as a reference book for those who have already learned much of the materials.

Supporting materials. Exercises and solutions are available in PDF files
at www. bm. ust. hk/~ sswang/math-book/. Errors are inevitable and cor-
rections will be posted there. | may also provide additional materials such as

new sections and chapters at the site,
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Linear Algebra

We will focus on the part of linear algebra that is most useful for busi-
ness studies; specifically, we will focus on matrices. We assume that the

readers have some preliminary knowledge of linear algebra.

1.1 Vector

A scalar is either a real number a € R or a complex number z € C,
where R is the set of all real numbers and C is the set of all complex num-

bers. A wvector is an ordered sequence of numbers;

Iy

o]

= (L. D

ZLn

The numbers x; are called entries, coefficients or elements. The entries can
generally be complex numbers. However, except when eigenvalues are in-
volved, we typically have real entries and denote an n-dimensional vector as
xz €ER". For convenience, we sometimes write it as (x;) or (x;),. In business
studies, for example, a vector can represent a financial asset, with its entries
representing features of the financial asset.

A special vector is the zero vector ; 0 € R". Given a vector in (1.1), we
can define its transpose and denote it as £’ or x7, with

’
xr = xT = (.1'1 9129"'y$n)
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We typically write a vector as a vertical/column vector; its horizontal/row

version is '. For a vector z € R", we can define its length as || z||, where

Izl =/t + -+

and call it the norm. Then, we can define the distance of any two points x
and yin R" by thenorm || z—y ||.
Given two vectorsa = (a;), and b = (4;),,, we can define their summation

a+b, subtractiona — b, and multiplicationa’b, {a,b) or a + b, where

a1+bl al—bl "
atb=| i |, a—b=| i |, acb= D ab;
a, + b, an, — b, =t

We can also multiply a vector a € R” by a number A € R:
Aay
Aa=| :
A,
These operations are intuitively shown in Figure 1. 1, where
asb= |al - ||&] ¢ cos(®

A

Figure 1.1 Graphic Illustration of Vector Operations
€D Proposition 1.1 For vectors a,b,c € R", we have

2



Chapter 1 Linear Algebra

(a) Associative law of summation;: (a +8&) +c=a+ (b+0).

(b) Commutative law of summation: a +& = b6-+a.

(c) Commutative law of multiplication: a « 6 = b « a.

(d) Distributive law: a « (b+c¢) =a-b+a-c.

A vecfor,@ € R" is a linear combination of vectorsai s **sa, & R", if there

exist A;s***sAn € R s. t. (such that)
‘8 = Alal + b +/\,,.a,,.

For example, a mutual fund is a linear combination of some basic assets. De-

fine the span of a few vectors a; ,***,a, as
span(a; »***»a,) = {all linear combinations of vectors a;»*** sam }

For example, a financial market can be considered as the span of some basic
financial assets.

A few vectorsa; saz »*** san € R" are linearly dependent if there exist numbers
A15dz5°54, € R, not all 0, such that

Ara; +Azaz + .- —f-A,,.a,,, =0

Vectors which are not linearly dependent are linearly independent. Hence, vec-
tors a saz »*** ya, are linearly independent if equation ciay + coay + *** + ¢ty = 0
holds only if¢; = ¢; = +*» = ¢, = 0. Linear independence means that any of the
vectors cannot be a linear combination of the rest.

Example 1.1 Any two linearly independent vectors in R? can span the
whole space R?. This can be shown graphically. In general, R" can be

spanned by n linearly independent vectors.

1.2 Matrix

A matrix is an ordered sequence of column vectors or row vectors,

which can be written in the following form:

an "t Qi
A= : (1. 2)
Aml b Ay

The numbers a; are called entries, coefficients or elements. The entries can
3
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generally be complex numbers. However, except when eigenvalues are in-
volved, we typically have real entries. We say that matrix A in (1.2) is of -
dimension m X n and denote A € R™". For convenience, we sometimes write
it as (a;) or (a;)mx:. In business, a matrix can represent a set of data of a
few economic variables.

Example 1.2 The {following is a linear equation system for variables
199Xy

anx) +apx; ¥ tapx, = d,

anx +apx, + - tanx, = d;

Am X1 T Am2 Xzt + Ay = dim
This linear equation system can be written as Az = d, where A is defined in
(1.2) andd = (d)n.

A special matrix is the zero matriz: 0 € R™", for which all the entries
are zero, When m = n, we have a square matriz. A special square matrix is
the identity matriz : I, € R™, for which all the diagonal entries are 1 and
the rest are zero.

Given two matrices A and B, we can define their summation A-+B, sub-
traction A — B, and multiplication AB. A requirement on the operations is to

have matching dimensions as shown in the following:
Aan + Ban ’Aan — Ban 9AanBnXk

For A = (a;) and B = (b;), with matching dimensions, the operations are
defined by

ay by e ai, £ by,
A+B= : :
Am1 _—'_bml ree Amn +bmn

n n
2 :altbtl b § :alsbtk
t=1 A=1

AB = : :
n n
E Qb ==- 2 amzb:k
t=1 t=1

We can also multiply a matrix A = (a; ) e by a number A € R:
4



Chapter 1 Linear Algebra

Aain M
M= : :
Ao 0 Adm

Vectors can be treated as one-column matrices, By this, the definition of ma-
trix operations applies to vectors too. That is, the operations for one-column
matrices are consistent with the operations defined for vectors.

Example 1.3 Given two vectorsa € R™ and b € R", deriveab’.

Why do we define such matrix operations? The reason is that these defi-
nitions turn out to be very convenient in many applications. Take an example
of the multiplication operation. Suppose that a vector x € R" is mapped line-
arly to another vector y € R" by y = Az, where A € R™"; and suppose that
vector y is further mapped to z € R* by 2 = By, where B € R™". The question
is: how can we map x directly to z? The answer is: we can find a matrix C €
R™" such that z = Cz and this matrix C turns out to be C = BA, where the
multiplication operation is defined above.
<] Theorem 1.1 Whenever the matrix operations are feasible, we have

(a) Associative law of summation: (A+B) +C= A+ (B+ ).

(b) Associative law of multiplication; A(BC) = (AB)C.

(¢) Commutative law of summation: A4+ B = B+ A.

(d) Distributive law; A(B+C) = AB + AC,(B+ C)A = BA +CA.

Denote the determinant of a square matrix A as | A |. Why do we define

the determinant this way? The reason is that, for the case of a 3 X3 matrix
A =(a1saz2a3) s the absolute value of the determinant is the size of an object

defined by the column vectors of the matrix (See Figure 1. 2),

Figure 1.2 The Volume of a Parallelepiped
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Theorem 1.2 For any A,B € R™, we have | AB [=| A || B|.
Given a square matrix A = (a; ) .x» » we call the following determinant the

minor of a; :
an v aAnq| a1ttt Qi
Ai-1,1 ' Qi,j1 Gttt Qi

aq1,1 " Qip,i1 A, "t Qi

an oo An,j—1 An, i1 oo Qnn

and call the {ollowing value the cofactor of a; :
C,_',’ = (’_ ].)H_jM,'j
Denote
C11 Cln T
A = | ¢ :
Cnl it Crm

and call it the adjoint of A.
&) Theorem 1.3 For any square matrix A = (a;) € R™", we have

(@) >jauCs = D)ayCy =| A |, for any i,j;
k=1 k=1

(b) Ea,kcjk = Za]dej = 0, for any i,j,i7%7.
=1 k=1
The first result in Theorem 1. 3 comes directly from the definition of de-
terminant and the second result can be easily derived from the first result.
For A € R™, if there is another B € R™ such that AB = BA = I, then
A is said to be invertible or nonsingular, and denote B as A™'. A™! is called

the inverse matriz of A. The inverse is unique.

&) Theorem 1.4 For A € R™", A is invertible if and only if | A | 0. When

A is invertible, the inverse is

A7 = oAl

&> Corollary 1.1  For a square matrix A,
6



Chapter 1 Linear Algebra

(a) Its inverse matrix is unique,
(b) If there is a matrix B such that AB=1I or BA=1I, then A is inverti-

ble and B=A"'.
Example 1.4 Find the inverse of

A:(a b)

c d
We have C]] = d,C]z =’_CsC2] ~_—_b,C22 = a. Thus,
o 1 (d —b)
ATETTRC. .

&) Theorem 1.5 1f A,B € R™ are invertible, then
(a) (A = A;
(b) (AB)™' = B'A™".,

Given matrix

an gz **° d,
Az Qzz  ***  Qz

A=

Am Am2 T Amn

denote the transpose of A as A’ or AT, where

Q1 Az, o Qpen

That is, (a3)7ma= (@) wm.

A matrix A is symmetric if A" = A. A symmetric matrix must be a square
matrix,

The following theorem presents the key properties of the transpose oper-
ation.
<) Theorem 1.6 For the transpose operation, we have

(a) (A" = A.

(b) (A+B) =A"+B.

(c) (AB)' = B'A’".
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(D (cA) = cA’, for anyc € R.
(e) (AN =A™
For a square matrix A € R™", denote

r(A)=ay +azg+ - +anm

and call it the trace of A. The trace applies only to square matrices. The trace
is a second key number for a matrix, following the determinant. A third key
number is the rank of a matrix, which will be defined later. The following

(&) r{cA) =c¢ » r(A), for any c € R.

(b) r(A") = o (A).

() r(A+B) = r (A) +tr (B).

(d) r (AB) = o (BA).

(&) r (T'AT) = tr (A).

For a matrix A € R™", if the maximum number of linearly independent
row vectors of A isr, then A is said to have rankr and is denoted as rank (A) = .
A submatriz of a given matrix consists of a rectangular array of entries lying
in specified subsets of the rows and columns of the given matrix. These rows
and columns need not be adjacent,

<) Theorem 1.8 For any A € R,

i

rank (A) = the maximum number of independent row vectors

I

the maximum number of independent column vectors

= the size of the largest invertible square submatrix of A

2 —1 3
Example 1.5 Consider matrix A = |4 —2 5. Since the first two
2 —1 4

columns are proportional to each other, there are at most two linearly inde-
pendent columns. Hence, rank (A) <{ 2. We can easily find a non-singular

submatrix;

23‘_20
4 5|7 °F

indicating that the first and third columns are linearly independent. Hence,
8



