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Figure 1.3 Cell migration into a synthetic three-dimensional (3D) scaffold.

A composite 3D scaffold composed of poly(methacrylic acid) (PMMA) and
poly(hydroxyethyl methacrylate) (PHEMA) was developed for cornea tissue
engineering. Confocal microscopy was used to monitor migration of corneal
fibroblasts into the acellular scaffold. Using a viability assay, the live or dead
cells fluoresce different in different wavelengths. Because the confocal images
were collected at different focal depths, reconstructed 3D images can be
produced with detailed information in the direction of cell migration into

the scaffold. * indicates p<0.05. 11

Figure 1.4 Four-color imaging of osteogenesis. Human MSCs were induced
to differentiate to osteoblasts. At day 14, the cells were labeled and visualized
to quantify the extent of osteogenesis. Using a multiphotom microscope
(Bio-Rad, Radiance 2000), a set of four fluorophores was selected to label
and image simultaneously the nuclei (blue), osteocalcin expression (green),
microtubule (yellow), and microfilament (red) organization. These four
fluorophores were carefully chosen to minimize potential spectroscopic
overlaps. 13

Figure 2.7 The calculated T; and T’ as functions of the water molecule
tumbling rate and magnetic field strength (100-700 MHz) calculated using
the BPP theory of relaxation [50]. As the tissue matures, both T’ and T
decrease, as shown by the red arrow. Most human tissues fall within the range
shown by the blue ellipse. T, is commonly used in the assessment of cartilage
regeneration, as can be seen in a recent clinical trial [2, 6]. The figure shows
that relaxation times are field dependent for soft tissues. The inset shows an
example of how T5/T; can be used as a unit-free biomarker for the assessment.
As shown in the inset, the control gel has the highest T,/ Ty, but the ratio is
lowest for osteogenic constructs with chondrogenic constructs falling
between the two. Data in the inset are adapted from (25, 51]. 35

Figure 3.6 (a) Schematic of a sample preparation for MRI measurement (the black
arrow indicates the sample inside a 5mm tube). (b) A representative T>-weighted
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proton MRI of an acellular scaffold. (c—e) Representative sodium MRI of
chondrogenic constructs at day 7, day 14, and day 28 along with representative
ROIs of the construct (bottom box) and reference media (top box). The average
number of voxels in sodium images is 231+ 22. Majumdar [23]. Reproduced with
the permission of Springer. 59

Figure 3.8 (a) TQ signal intensity as a function of creation time for tissue-
engineered cartilage and their best fit with Equation 3.1 for 1-day-old engineered
cartilage constructs. (b) The TQ signal of human marrow stromal cells
(HMSCs) seeded in biomimetic scaffolds at week 2 and week 4. The week 4
spectrum is narrow compared to the week 2 spectrum, indicating faster
motion or lower wqz, at week 4. Reproduced with the permission from
Kotecha et al. [26]. 61

Figure 5.6 Material properties are calculated from each filtered dataset and
averaged with a weight corresponding to the amplitude of the motion at each
pixel. 106

Figure 5.7 A circular low-pass Butterworth filter is applied on every map of
material properties so that they appear smoother. 107

Figure 5.9 Construct development map over 4-week period. Adipogenic (A) and
osteogenic (O) constructs are shown from left to right with corresponding shear
wave image, elastogram, and average shear stiffness. The colormap for the
elastogram corresponds with the color scheme of the bar chart. 110

Figure 5.11 Shear wave images (top) and corresponding stiffness maps
(bottom) in engineered constructs after 4 weeks of implantation. The
displacement map shows the propagation of shear waves through constructs.
Notice that, multiple waves are visible in adipose construct, indicating a
lower stiffness and softer tissue structure, while for stiffer tissues—both
osteogenic and chondrogenic—a full shear wave is not attained.
Reconstructed elastogram on the bottom shows estimated stiffness of 2, 9,
15kPa for adipogenic, chondrogenic, and osteogenic constructs,
respectively. 112

Figure 5.12 Silk construct development map over 8-week study. Shown from
left to right are the magnitude image, T, relaxation map, shear wave image,
and stiffness map of the constructs. Average T relaxation times decreased
from 91.2 67.6 + 3.1 at week 8. Average stiffness values increased from
7.6+2.0kPa17.2+3.1 at week 8. 113

Figure 5.13 Collagen construct development map over 8-week study. Shown
from left to right are the magnitude image, T’ relaxation map, and stiffness
map of the constructs. Average T, relaxation times decreased from
75.2+18.4ms at week 2 to 58.4+4.2 at week 8. Average stiffness values
increased from 4.6+ 1.7kPa at week 2 to 14.7 + 3.8 kPa at week 8. 114



List of Plates

Figure 6.1 Example of using FEA to verify the inversion algorithm in MRE.
(a) The geometry of the model is that of a fluid-filled spherical shell
embedded in a stiffer medium, and a solid spherical medium with the same
density as the shell embedded in the medium for comparison. (b) The wave
pattern of the model under a horizontal 80-Hz harmonic excitation. (c) The
stiffness map obtained from the regular Helmholtz inversion algorithm. (d)
The stiffness map obtained from an effective stiffness estimation
algorithm. 119

Figure 6.3 Displacement amplitude results for three simulations. The

top row is the displacement amplitude shown on the 3D models of

(a) harmonic excitation on a 3-mm diameter area in the vertical direction,
(b) harmonic excitation on a 3-mm diameter area in the direction normal to
the excitation plane, and (c) harmonic excitation on a 6-mm diameter area
in the direction normal to the excitation plane. The bottom row is the
displacement amplitude map on the short-axis slice plane of (d)

harmonic excitation on a 3-mm diameter area in the vertical direction,

(e) harmonic excitation on a 3-mm area in the direction normal to the
excitation plane, and (f) harmonic excitation on a 6-mm are in the
direction normal to the excitation plane, 123

Figure 7.1 Three-dimensional oxygen map of fibrosarcoma tumor and tumor
bearing leg. The tumor outline, determined from a registered MR image, is
shown in red. The image was acquired using 250-MHz pulse EPR oxygen
imager. 131

Figure 7.7 Example of MR and EPR image registration. The tumor area
(brighter than the leg) is determined in MR image. After image registration,
the tumor area is transferred from MR to EPR image for oxygen

analysis. 140

Figure 7.8 (a) MRI and EPR spin probe distribution in bulky acellular PLGA
scaffold in PBS (sample courtesy of Dr. Syam Nukavarapu). (b) 1-mm-thick
acellular collagen gel (2 mg/ml) (The gel was provided by Dr. Michael Cho.)
Registered CT, EPR spin probe distribution, and mock-up oxygen image of
the deoxygenated sample. 141

Figure 8.3 Femur example of image registration, 2D segmentation, and 3D
reconstruction process. (a) CT images are loaded into and properly
registered. (b) ROl is identified as appropriate differentiating color mask.
(c) 3D voxel-based femur model. Sun et al. [1]. Reproduced with the
permission of Elsevier. 160

Figure 8.5 Anatomy of the knee joint: anterior view. The knee meniscus is
situated between the femur and the tibia. Crossing the meniscus are various
ligaments, which aid in stabilizing the knee joint. Kohn and Moreno [82].
Reproduced with the permission of Elsevier. 162
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Figure 8.7 Spatiotemporally released rhCTGF- and rhTGFp3-induced
fibrocartilage-like matrix formation in 3D-printed porous scaffolds. (a)
Anatomic reconstruction of human meniscus. Human meniscus scaffolds
were 3D-printed with layer-by-layer deposition of PCL fibers (100 pm
diameter), forming 100-200 um channels. (b) Poly(lactic-co-glycolic acid)
(PLGA) microspheres (mS) encapsulating thCTGF and rhTGFp3 were in
physical contact with PCL microfibers. (c) Fluorescent dextrans simulating
CTGF (green, 40kDa) and TGFp3 (red, 10 kDa) were delivered into the outer
and inner zones, respectively, of human meniscus scaffolds to show scaffold
loading. Distribution of dextrans was maintained from day 1 to day 8. (d)
rhCTGF and rhTGFp3 release from the PCL scaffolds over time in vitro.

(e) When the scaffolds were incubated at top human synovium MSC
monolayers for 6 weeks, spatiotemporally delivered rhCTGF and rhTGFp3
induced cells to form zone-specific collagen type I and II matrices, similar to
the native rat meniscus. (f) Scaffold with empty mS showed little matrix
formation after 6 weeks of coculture with 1:1 mixture of fibrogenic and
chondrogenic supplements (no growth factors in medium), Spatiotemporal
delivery of rhCTGE- and rhTGFp3-induced fibrocartilaginous matrix
formation, consisting of alcian blue-positive, collagen Il-rich cartilaginous
matrix in the inner zone and picrosirius red-positive, collagen I-rich fibrous
matrix in the outer zone. A total of five replicates were tested, with
representative images selected from the same scaffold. Lee et al. [5].
Reproduced with the permission of The American Association for the
Advancement of Science. 166

Figure 9.4 Invitro Ty, T;, and ADC maps of control, osteogenic, and
chondrogenic engineered tissues. These tissues were grown by seeding
HMSCs in 1:1 collagen I/chitosan gel and subjecting them pro-chondrogenic
and pro-osteogenic differentiation for 4 weeks. Pothirajan et al. [83].
Reproduced with the permission of IEEE. 188

Figure 9.7 (a) Hybrid PLGA-PuraMatrix-based chondrogenic construct in
a 5-mm MRI tube. (b) Representative T; maps of constructs for control
(acellular), at days 7 and 28. (c) Representative T, maps of constructs for
control (acellular), at days 7 and 28. (d) GAG/DNA measurement (n =3) at
days 7, 14, and 28. (e and f) The correlation between the R, (ECM)
(=1/T,(ECM)) and Ry(ECM) (=1/T5(ECM)) with an increased amount of
GAG/DNA in stem cells undergoing chondrogenesis in a PLGA—-
PuraMatrix scaffold system. The three points in the graphs are for days 7,
14, and 28, respectively. 192

Figure 10.4 Example MR image of the porcine ACL and a histogram showing
the distribution of T,* within the healing ligament. Biercevicz et al. [54].
Reproduced with the permission of John Wiley & Sons. 217
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Figure 13.4 Inoculation of the hybrid hollow fiber bioreactors with
hepatocytes mixed with microcarriers (a). Graphs of B-NTP/B-NTP from
first spectrum from hepatocytes perfused with media subjected to 20 and
40% oxygen, and 40% oxygen but directly perfused through the cell
compartment (b) and the respective analysis of media components showing
the 20 and 40% oxygen treatments with regular flow configuration, showing
the increase in lactate dehydrogenase, validating the decrease in B-NTP

(c). Jeffries and Macdonald [38]. Reproduced with the permission of

John Wiley & Sons. 283

Figure 13.7 Transaxial velocity-encoded MRI of the multicoaxial hollow fiber
bioreactor (inset) at two inward radial flow rates (a). Note the difference in
flow of the ECC between the two flow rates, and the ICC flow is out of the
range of velocities for the MRI experiment and is folded. FIDAP theoretical
analysis of flow in the three compartments is given (b). Note the laminar
nature matches the ECC and cell compartments and predicts a higher velocity
profile in the ECC. Wolfe et al. [37]. Reproduced with the permission of John
Wiley & Sons. 290

Figure 13.8 Confocal cross-sectional images of multicoaxial bioreactors (b) at
culture day 30. (a) Human hepatocytes embedded in (1:1) collagen: Matrigel,
TEM of microtomed slice across the mid-section (al) and confocal image (a2)
with enlargement (a3) of (c) a similar bioreactor enoculated with alginate-
encapsulated hepatocytes at 3.5 x 10" cell/ml (c1), and a 6-pm thick slice at the
mid-section after 30 days in culture (c2), and the enlargement (c3). Jeffries and
Macdonald [38]. Reproduced with the permission of John Wiley & Sons. 292

Figure 15.2 Example of myocardial tagging for regional assessment of strain
in a rat heart. Tag lines are applied in grid pattern at diastole and imaged
through to systole. A strain map is then calculated for the deformation
between each frame and strain curves produced for each LV segment. 339
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