FENERBLINUXME RS (Z0R)

Understanding

LINUX

NETWORK INTERNALS

Understanding

LINUX
NETWORK
INTERNALS

FENIEELINUXR S P 25 e

Christian Benvenuti

O’REILLY®

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo
O'Reilly Media, Inc. #A42 & d X & & B4t kR
FmaAF U

EE#ER&E (CIP) ¥R

EABRMLinux MERNE / (F) FX9%E
(Benvenuti, C.) & . —HA . —EK: RKEAX¥H
kR, 2006.5

F 4L : Understanding Linux Network Internals

ISBN 7-5641-0367-1

I ... O.4&.. II. Linux &G —&EX
IV .TP316.89

" IR A B 4518 CIP $diik+ (2006) %8 047702 5

LHE PR EER A BEID
E¥. 10-2006-131 2

©2006 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press, 2006.
Authorized reprint of the original English edition, 2006 O'Reilly Media, Inc., the owner of all rights to publish
and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
3% LR e &7 O'Reilly Media, Inc. # #& 2006,

XY A& d kg kA d R 2006, ¥ P RR & & iR Aw 4K 43 1T 5 Hzﬁiixfwﬁﬁké‘lﬁﬁ‘ﬁ'i‘ —— O'Reilly
Media, Inc. #53#% °T ,

AR, ABBBAT, &45GETH S 2R THRAETH X EH,

.

+ £/ TEAFRRE Linux RZEHNE ER)

3 5/ ISBN 7-5641-0367-1

HERE/ ki

#HHEi%it/ Karen Montgomey, 3kfi

MR EFT/ B AFHRH (press.seu.edu.cn)

<1 hE/ FERVOREEE 25 (ARBR4REE 210096)

BN ORI/ B wEIRIARAR

¥ A/ T8TEHXR x980FE XK 16FA 66.5E0%
iR w1 200645 HE 1R 2006 4E5 A% 1 kENRI
En ¥/ 0001-2000 4

E #r/ 98.00C ()

O'Reilly Media, Inc. /145

O'Reilly Media, Inc. £t F7f UNIX, X Internet b HEZLEBSIRAEAE
GG HR AT, R RBRYLEARE .

MEUHH5H (The Whole Internet User's Guide & Catalog) (##1#)2 3L EHIHIEA
ZHHEEEENSOAB Z—) FIGNN (FERY Internet [] E), FE
WebSite (& — A~ £ HPCHIWeb &5 2348k {4) , O'Reilly Media, Inc.—H 4bT Internet
b 3:3:05 4L

T £ BEHRBEYH, OReilly Media, Inc. REREMNIHEINBLHES —B8—
AR —IRFR. SAEHETEIEBHB AL, O'Reilly Media, Inc. RHRE
HIHEHLE WL E R, X{EH OReilly Media, Inc. B T —A4E#H AR T Kb H AR
AR 54, O'Reilly Media, Inc. iAW %A RUARTERRF R, ERREK
IR E R, OReilly Media, Inc. BH ¥ % B EHIEEBE — 15 S £HEXS
BB ARER. BRNER, MALERSEME, OReilly Media, Inc. {KFE M5
#EHEAS . B2 O'Reilly Media, Inc. B STHREYLLFEKRE, FLLO'Reilly
Media, Inc. 5T FEEFEEH L2EBH.

tH hiz 5 AR

BEE AR RBMITIZNE, AREESA—ATBEARRERBOFRY. R
PLEEARRIR RS AN T kA7, BilkiEzhin B % £ Bk T EXRRN, R,
TR SRR B AR EFE B 2 R R BT R, A THRBENEARAN REE —E
TRESMEFEA, KEK%EHRLFIRE O'Reilly Meida, Inc il B, #b
LR3I %A AR AT R R RS TMOUR T B AN E IR, LA IR S it
FIORIFEAEBEAIEE . Ko, RERBEDREENES “RP” HiK, HE K
HEeR” RIAKIEE.

BRI A L, 5l ERBEEX EAMXTLAERA R . BHEHLARBEA R
MERIMA M TR, HEANTREIERNRBRE R, hROHE
EERH SRR R

BT AR B — HERCED R B 45, R4 .

o (HEAHMLinux N FE=RY (BER)

o (Perl BxEEXLE) (KENRKR)

o (H&Perl R IR (FEENR)

o (PerliEFAI] FWEARY (REENRR)

o (HEA®RHHTML 5 CSS. XHTML) (BENRR)
e (UML 2.0 i RFMY (FLEIAR)

o (802.11 TL& ML ELIER % /R (REENAR)
e (WMAFEEZAR) (REIR)

e (NETHHFER FARY (REAR)

e (ASP.NETHEE F=IR) (REKR)

o (A Ajax) (ENRR)

e (Ajax Hacks) (BZENER)

o (IEAFEMR Linux R RNEY (FEHK)

o (WebRIHBAFM F=IR) (RER)

o (HKEBEWMMWERY (REVR)

Preface

Today more than ever before, networking is a hot topic. Any electronic gadget in its
latest generation embeds some kind of networking capability. The Internet contin-
ues to broaden in its population and opportunities. It should not come as a surprise
that a robust, freely available, and feature-rich operating system like Linux is well
accepted by many producers of embedded devices. Its networking capabilities make
it an optimal operating system for networking devices of any kind. The features it
already has are well implemented, and new ones can be added easily. If you are a
developer for embedded devices or a student who would like to experiment with
Linux, this book will provide you with good fodder.

The performance of a pure software-based product that uses Linux cannot compete
with commercial products that can count on the help of specialized hardware. This
of course is not a criticism of software; it is a simple recognition of the consequence
of the speed difference between dedicated hardware and general-purpose CPUs.
However, Linux can definitely compete with low-end commercial products that are
entirely software-based. Of course, simple extensions to the Linux kernel allow ven-
dors to use Linux on hybrid systems as well (software and hardware); it is only a
matter of writing the necessary device drivers.

Linux is also often used as the operating system of choice for the implementation of
university projects and theses. Not all of them make it to the official kernel (not right
away, at least). A few do, and others are simply made available online as patches to
the official kernel. Isn’t it a great satisfaction and reward to see your contribution to
the Linux kernel being used by potentially millions of users? There is only one draw-
back: if your contribution is really appreciated, you may not be able to cope with the
numerous emails of thanks or requests for help.

The momentum for Linux has been growing continually over the past years, and
apparently it can only keep growing.

I first encountered Linux at the University of Bologna, where I was a grad student in
computer science around 10 years ago. What a wonderful piece of software! I could

work on my image processing projects at home on an i286/486 computer without
having to compete with other students for access to the few Sun stations available at
the university labs.

Since then, my marriage to Linux has never seen a gray day. It has even started to dis-
place my fond memories of the glorious C64 generation, when I was first introduced
to programming with Assembly language and the various dialects of BASIC. Yes, I
belong to the C64 generation, and to some extent I can compare the joy of my first
programming experiences with the C64 to my first journeys into the Linux kernel.

When 1 was first introduced to the beautiful world of networking, I started playing
with the tools available on Linux. I also had the fortune to work for a UNESCO cen-
ter in Italy where I helped develop their networking courses, based entirely on Linux
boxes. That gave me access to a good lab equipped with all sorts of network devices
and documentation, plus plenty of Linux enthusiasts to learn from and to collabo-
rate with.

Unfortunately for my own peace of mind (but fortunately, I hope, for the reader of
this book who benefits from the results), I am the kind of person that likes to under-
stand everything and takes very little for granted. So at UNESCO, I started looking
into the kernel code. This not only proved to be a good way to burn in my knowl-
edge, but it also gave me more confidence in making use of user-space configuration
tools: whenever a configuration tool did not provide a specific option, I usually knew
whether it would be possible to add it or whether it would have required significant
changes to the kernel. This kind of study turns into a path without an end: you
always want more.

After developing a few tools as extensions to the Linux kernel (some revision of ver-
sions 2.0 and 2.2), my love for operating systems and networking led me to the Sili-
con Valley (Cisco Systems). When you learn a language, be it a human language or a
computer programming language, a rule emerges: the more languages you know, the
easier it becomes to learn new ones. You can identify each one’s strengths and weak-
nesses, see the reasons behind design compromises, etc. The same applies to operat-
ing systems.

When I noticed the lack of good documentation about the networking code of the
Linux kernel and the availability of good books for other parts of the kernel, I
decided to try filling in the gap—or at least part of it. I hope this book will give you
the starting documentation that I would have loved to have had years ago.

I believe that this book, together with O’Reilly’s other two kernel books (Under-
standing the Linux Kernel and Linux Device Drivers), represents a good starting point
for anyone willing to learn more about the Linux kernel internals. They complement
each other and, when they do not address a given feature, point the reader to exter-
nal documentation sources (when available).

xviii | Preface

However, I still suggest you make some coffee, turn on the music, and spend some
time on the source code trying to understand how a given feature is implemented. 1
believe the knowledge you build in this way lasts longer than that built in any other
way. Shortcuts are good, but sometimes the long way has its advantages, too.

The Audience for This Book

This book can help those who already have some knowledge of networking and
would like to see how the engine of the Internet—that is, the Internet Protocol (IP)
and its friends—is implemented on a first-class operating system. However, there is a
theoretical introduction for each topic, so newcomers will be able to get up to speed
quickly, too. Complex topics are accompanied by enough examples to make them
easier to follow.

Linux doesn’t just support basic IP; it also has quite a few advanced features. More
important, its implementation must be sophisticated enough to play nicely with
other kernel features such as symmetric multiprocessing (SMP) and kernel preemp-
tion. This makes the networking code of the Linux kernel a very good gym in which
to train and keep your networking knowledge in shape.

Moreover, if you are like me and want to learn everything, you will find enough
details in this book to keep you satisfied for quite a while.

Background Information

Some knowledge of operating systems would help. The networking code, like any
other component of the operating system, must follow both common sense and
implicit rules for coexistence with the rest of the kernel, including proper use of lock-
ing; fair use of memory and CPU; and an eye toward modularity, code cleanliness,
and good performance. Even though I occasionally spend time on those aspects, |
refer you to the other two O’Reilly kernel books mentioned earlier for a deeper and
detailed discussion on generic operating system services and design.

Some knowledge of networking, and especially IP, would also help. However, I think
the theory overview that precedes each implementation description in this book is
sufficient to make the book self-contained for both newcomers and experienced
readers.

The theoretical description of the topics covered in the book does not require any
programming experience. However, the descriptions of the associated implementa-
 tions require an intermediate knowledge of the C language. Chapter 1 will go through
a series of coding conventions and tricks that are often used in the code, which
should help especially those with less experience with C and kernel programming.

Preface | xix

Organization of the Material

Some aspects of networking code require as many as seven chapters, while for other
aspects one chapter is sufficient. When the topic is complex or big enough to span
different chapters, the part of the book devoted to that topic always starts with a
concept chapter that covers the theory necessary to understand the implementation,
which is described in another chapter. All of the reference and secondary material is
usually located in one miscellaneous chapter at the end of the part. No matter how
big the topic is, the same scheme is used to organize its presentation.

For each topic, the implementation description includes:

* The big picture, which shows where the described kernel component falls in the
network stack.

* A brief description of the main data structures and a figure that shows how they
relate to each other.

* A description of which other kernel features the component interfaces with—for
example, by means of notification chains or data structure cross-references. The
firewall is an example of such a kernel feature, given the numerous hooks it has
all over the networking code.

* Extensive use of flow charts and figures to make it easier to go through the code
and extract the logic from big and seemingly complex functions.

The reference material always includes:

* A detailed description of the most important data structures, field by field

* A table with a brief description of all functions, macros, and data structures,
which you can use as a quick reference

* A list of the files mentioned in the chapter, with their location in the kernel
source tree

* A description of the interface between the most common user-space tools used
to configure the topic of the chapter and the kernel

* A description of any file in /proc that is exported

The Linux kernel’s networking code is not just a moving target, but a fast runner.
The book does not cover all of the networking features. New ones are probably
being added right now while you are reading. Many new features are driven by the
needs of single users or organizations, or as university projects, but they find their
way into the official kernel when they’re considered useful for a large audience.
Besides detailing the implementation of a subset of those features, I try to give you
an idea of what the generic implementation of a feature might look like. This will
help you greatly in understanding changes to the code and learning how new fea-
tures are implemented. For example, given any feature, you need to take the follow-
ing points into consideration:

xx | Preface

* How do you design the data structures and the locking semantics?

* Is there a need for a user-space configuration tool? If so, is it going to interact
with the kernel via an existing system call, an ioctl command, a /proc file, or the
Netlink socket?

* Is there any need for a new notification chain, and is there a need to register to
an already existing chain?

* What is the relationship with the firewall?

* Is there any need for a cache, a garbage collection mechanism, statistics, etc.?
Here is the list of topics covered in the book:

Interface between user space and kernel
In Chapter 3, you will get a brief overview of the mechanisms that networking
configuration tools use to interact with their counterparts inside the kernel. It
will not be a detailed discussion, but it will help you to understand certain parts
of the kernel code.

System initialization
Part II describes the initialization of key components of the networking code,
and how network devices are registered and initialized.

Interface between device drivers and protocol handlers
Part III offers a detailed description of how ingress (incoming or received) pack-
ets are handed by the device drivers to the upper-layer protocols, and vice versa.
Bridging
Part IV describes transparent bridging and the Spanning Tree Protocol, the L2
(Layer two) counterpart of routing at L3 (Layer three).

Internet Protocol Version 4 (IPv4)
Part V describes how packets are received, transmitted, forwarded, and deliv-
ered locally at the IPv4 layer.

Interface between IPv4 and the transport layer (L4) protocols
Chapter 20 shows how IPv4 packets addressed to the local host are delivered to
the transport layer (L4) protocols (TCP, UDP, etc.).

Internet Control Message Protocol (ICMP)
Chapter 25 describes the implementation of [CMP, the only transport layer (L4)
protocol covered in the book.

Neighboring protocols
These find local network addresses, given their IP addresses. Part VI describes
both the common infrastructure of the various protocols and the details of the
ARP neighboring protocol used by IPv4.

Routing

Part VII, the biggest one of the book, describes the routing cache and tables.
Advanced features such as Policy Routing and Multipath are also covered.

Preface | i

What Is Not Covered

For lack of space, I had to select a subset of the Linux networking features to cover.
No selection would make everyone happy, but I think I covered the core of the net-
working code, and with the knowledge you can gain with this book, you will find it
easier to study on your own any other networking feature of the kernel.

In this book, I decided to focus on the networking code, from the interface between
device drivers and the protocol handlers, up to the interface between the IPv4 and L4
protocols. Instead of covering all of the features with a compromise on quality, I pre-
ferred to keep quality as the first goal, and to select the subset of features that would
represent the best start for a journey into the kernel networking implementation.

Here is a partial list of the features I could not cover for lack of space:

Internet Protocol Version 6 (IPv6)
Even though I do not cover IPv6 in the book, the description of IPv4 can help
you a lot in understanding the IPv6 implementation. The two protocols share
naming conventions for functions and often for variables. Their interface to Net-
filter is also similar.

IP Security protocol
The kernel provides a generic infrastructure for cryptography along with a col-
lection of both ciphers and digest algorithms. The first interface to the crypto-
graphic layer was synchronous, but the latest improvements are adding an
asynchronous interface to allow Linux to take advantage of hardware cards that
can offload the work from the CPU.

The protocols of the IPsec suite—Authentication Header (AH), Encapsulating-
Security Payload (ESP), and IP Compression (IPcomp)—are implemented in the
kernel and make use of the cryptographic layer.

IP multicast and IP multicast routing
Multicast functionality was implemented to conform to versions 2 and 3 of the
Internet Group Management Protocol (IGMP). Multicast routing support is also
present, conforming to versions 1 and 2 of Protocol Independent Multicast (PIM).

Transport layer (L4) protocols
Several L4 protocols are implemented in the Linux kernel. Besides the two well-
known ones, UDP and TCP, Linux has the newer Stream Control Transmission
Protocol (SCTP). A good description of the implementation of those protocols
would require a new book of this size, all on its own.

Traffic Control
This is the Quality of Service (QoS) layer of Linux, another interesting and pow-
erful component of the kernel’s networking code. Traffic control is imple-
mented as a general infrastructure and as a collection of traffic classifiers and
queuing disciplines. I briefly describe it and the interface it provides to the main
transmission routine in Chapter 11. A great deal of documentation is available at
http://lartc.org.

xxii | Preface

Netfilter
The firewall code infrastructure and its extensions (including the various NAT
flavors) is not covered in the book, but I describe its interaction with most of the
networking features I cover. At the Netfilter home page, http://www.netfilter.org,
you can find some interesting documentation about its kernel internals.

Network filesystems
Several network filesystems are implemented in the kernel, among them NFS
(versions 2, 3, and 4), SMB, Coda, and Andrew. You can read a detailed descrip-
tion of the Virtual File System layer in Understanding the Linux Kernel, and then
delve into the source code to see how those network filesystems interface with it.

Virtual devices

The use of a dedicated virtual device underlies the implementation of network-
ing features. Examples include 802.1Q, bonding, and the various tunneling pro-
tocols, such as IP-over-IP (IPIP) and Generalized Routing Encapsulation (GRE).
Virtual devices need to follow the same guidelines as real devices and provide the
same interface to other kernel components. In different chapters, where needed,
I compare real and virtual device behaviors. The only virtual device that is
described in detail is the bridge interface, which is covered in Part IV.

DECnet, IPX, AppleTalk, etc.
These have historical roots and are still in use, but are much less commonly used
than IP. I left them out to give more space to topics that affect more users.

IP virtual server
This is another interesting piece of the networking code, described at http:/
www.linuxvirtualserver.org/. This feature can be used to build clusters of servers
using different scheduling algorithms.

Simple Network Management Protocol (SNMP)
No chapter in this book is dedicated to SNMP, but for each feature, I give a
description of all the counters and statistics kept by the kernel, the routines used
to manipulate them, and the /proc files used to export them, when available.

Frame Diverter
This feature allows the kernel to kidnap ingress frames not addressed to the local
host. 1 will briefly mention it in Part IIl. Its home page is http://diverter.
sourceforge.net.

Plenty of other network projects are available as separate patches to the kernel, and I
can’t list them all here. One that I find particularly fascinating and promising, espe-
cially in relation to the Linux routing code, is the highly configurable Click router,
currently offered at http://pdos.csail.mit.edu/click/.

Because this is a book about the kernel, I do not cover user-space configuration
tools. However, for each topic, I describe the interface between the most common
user-space configuration tools and the kernel.

Preface | il

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Italic
Used for file and directory names, program and command names, command-line
options, URLs, and new terms

Constant Width
Used in examples to show the contents of files or the output from commands,
and in the text to indicate words that appear in C code or other literal strings

Constant Width Italic
Used to indicate text within commands that the user replaces with an actual
value

Constant Width Bold
Used in examples to show commands or other text that should be typed literally
by the user

Pay special attention to notes set apart from the text with the following icons:

L)
A
ey This is a tip. It contains useful supplementary information about the
f‘.‘ . topic at hand.
> e

()
.~

This is a warning. It helps you solve and avoid annoying problems.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. The code samples are covered by a
dual BSD/GPL license.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Understanding Linux Network
Internals, by Christian Benvenuti. Copyright 2006 O’Reilly Media, Inc., 0-596-
00255-6.”

xxiv | Preface

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http:/fwww.oreilly.com/catalog/understandini/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari Enabled

o= When you see a Safari® Enabled icon on the cover of your favorite tech-
§m'mi nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

This book would not have been possible without an interesting topic to talk about,
and an audience. The interesting topic is Linux, this modern operating system that
anyone has an opportunity to be part of, and the audience is the incredible number
of users that often decide not only to take advantage of the good work of others, but
also to contribute to its success by getting involved in its development. I have always
loved sharing knowledge and passion for the things I like, and with this book, I have
tried my best to add a lane or two to the highway that takes interested people into
the wonderful world of the Linux kernel.

Preface | v

Of course, I did not do everything while lying in a hammock by the beach, with an
ice cream in one hand and a mouse in the other. It took quite a lot of work to investi-
gate the reasons behind some of the implementation choices. It is incredible how
much information you can dig out of the development mailing lists, and how much
people are willing to share their knowledge when you show genuine interest in their
work.

For sure, this book would not be what it is without the great help and suggestions of
my editor, Andy Oram. Due to the frequent changes that the networking code expe-
riences, a few chapters had to undergo substantial updates during the writing of the
book, but Andy understood this and helped me get to the finish line.

I also would like to thank all of those people that supported me in this effort, and
Cisco Systems for giving me the flexibility I needed to work on this book.

A special thanks also goes to the technical reviewers for being able to review a book
of this size in a short amount of time, still providing useful comments that allowed
me to catch errors and improve the quality of the material. The book was reviewed
by Jerry Cooperstein, Michael Boerner, and Paul Kinzelman (in alphabetical order,
by first name). I also would like to thank Francois Tallet for reviewing Part IV and
Andi Kleen for his feedback on Part V.

i | Preface

Table of Contents

Preface xvii
Partl. General Background
1. Introduction 3
Basic Terminology 3
Common Coding Patterns 4
User-Space Tools 18
Browsing the Source Code 19
When a Feature Is Offered as a Patch 20
2. (ritical DataStructuresoooLL. 22
The Socket Buffer: sk_buff Structure 22
net_device Structure 43
Files Mentioned in This Chapter 57
3. User-Space-to-KernelInterface 58
Overview 58
procfs Versus sysctl 60
ioctl 67
Netlink 70
Serializing Configuration Changes 71

vii

Partll. System Initialization

4. NotificationChains 75
Reasons for Notification Chains 75
Overview 77
Defining a Chain 78
Registering with a Chain 78
Notifying Events on a Chain 79
Notification Chains for the Networking Subsystems 81
Tuning via /proc Filesystem 82
Functions and Variables Featured in This Chapter 83
Files and Directories Featured in This Chapter 83

5. Network Device Initialization 84
System Initialization Overview 84
Device Registration and Initialization 86
Basic Goals of NIC Initialization 86
Interaction Between Devices and Kernel 87
Initialization Options 93
Module Options 93
Initializing the Device Handling Layer: net_dev_init 94
User-Space Helpers 96
Virtual Devices 100
Tuning via /proc Filesystem 103
Functions and Variables Featured in This Chapter 104
Files and Directories Featured in This Chapter 105

6. The PCl Layer and Network InterfaceCards 106
Data Structures Featured in This Chapter 106
Registering a PCI NIC Device Driver 108
Power Management and Wake-on-LAN 109
Example of PCI NIC Driver Registration 110
The Big Picture 112
Tuning via /proc Filesystem 114
Functions and Variables Featured in This Chapter 114
Files and Directories Featured in This Chapter 115

vii | Table of Contents

