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Preface

Everything is more simple than one thinks
but at the same time more complex than one can understand
Johann Wolfgang von Goethe

To reach the point that is unknown to you,
you must take the road that is unknown to you
St. John of the Cross

This is a book on the numerical approximation of partial differential equations
(PDEs). Its scope is to provide a thorough illustration of numerical methods
(especially those stemming from the variational formulation of PDEs), carry
out their stability and convergence analysis, derive error bounds, and discuss
the algorithmic aspects relative to their implementation.

A sound balancing of theoretical analysis, description of algorithms and
discussion of applications is our primary concern.

Many kinds of problems are addressed: linear and nonlinear, steady
and time-dependent, having either smooth or non-smooth solutions. Besides
model equations, we consider a number of (initial-) boundary value problems
of interest in several fields of applications.

Part I is devoted to the description and analysis of general numerical
metheds for the discretization of partial differential equations.

A comprehensive theory of Galerkin methods and its variants (Petrov-
Galerkin and generalized Galerkin), as well as of collocation methods, is devel-
oped for the spatial discretization. This theory is then specified to two numer-
ical subspace realizations of remarkable interest: the finite element method
(conforming, non-conforming, mixed, hybrid) and the spectral method (Leg-
endre and Chebyshev expansion).

For unsteady problems we will illustrate finite difference and fractional-
step schemes for marching in time. Finite differences will also be extensively
considered in Parts II and III in the framework of convection-diffusion prob-
lems and hyperbolic equations. For the latter we will also address, briefly, the
schemes based on finite volumes.

For the solution of algebraic systems, which are typically very large and
sparse, we revise classical and modern techniques, either direct and iterative
with preconditioning, for both symmetric and non-symmetric matrices. A
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short account will be given also to multi-grid and domain decomposition
methods. :

Parts II and III are respectively devoted to steady and unsteady prob-
lems. For each (initial-) boundary ‘value problem we consider, we illustrate
the main theoretical results about well-posedness, i.e., concerning existence,
uniqueness and a-priori estimates. Afterwards, we reconsider and analyze the
previously mentioned numerical methods for the problem at hand, we derive
the corresponding algebraic formulation, and we comment on the solution
algorithms.

To begin with, we consider all classical equations of mathematical physics:
elliptic equations for potential problems, parabolic equations for heat diffu-
sion, hyperbolic equations for wave propagation phenomena. Furthermore, we
discuss extensively advection-diffusion equations for passive scalars and the
Navier-Stokes equations (together with their linearized version, the Stokes
problem) for viscous incompressible flows. We also derive the equations of
fluid dynamics in their general form.

Unfortunately, the limitation of space and our own experience have re-
sulted in the omission of many important topics that we would have liked to
include (for example, the Saint-Venant model for shallow water equations,
the system of linear elasticity and the biharmonic equation for membrane
displacement and thin plate bending, the drift-diffusion and hydrodynamic
models for semiconductor devices, the Navier-Stokes and Euler equations for
compressible flows).

This book is addressed to graduate students as well as to researchers and
specialists in the field of numerical simulation of partial differential equations.

As a graduate text for Ph.D. courses it may be used in its entirety. Part
I may be regarded as a one quarter introductory course on variational nu-
merical methods for PDEs. Part II and III deal with its application to the
numerical approximation of time-independent and time-dependent problems,
respectively, and could be taught through the two remaining quarters. How-
ever, other solutions may work well. For instance, supplementing Part I with
Chapters 6, 11 and most part of 14 may be suitable for a one semester course.
The rest of the book could be covered in the second semester. Following a
different key, Part I plus Chapters 8, 9, 10, 12, 13 and 14 can be regarded
as an introduction to numerical fluid dynamics. Other combinations are also
envisageable.

The authors are grateful to Drs. C. Byrne and J. Heinze of Springer-
Verlag for their encouragement throughout this project. The assistence of
the technical staff of Springer-Verlag has contributed to the final shaping of
the manuscript.

This book benefits from our experience in teaching these subjects over the
past years in different academical institutions (the University of Minnesota
at Minneapolis, the Catholic University of Brescia and the Polythecnic of
Milan for the first author, the University of Trento for the second author),
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and from students' reactions. Help was given to us by several friends and
collaborators who read parts of the manuscript or provided figures or tables.
In this connection we are happy to thank V.I. Agoshkov, Yu.A. Kuznetsov, D.
Ambrosi, L. Bergamaschi, S. Delladio, M. Manzini, M. Paolini, F. Pasquarelli,
L. Stolcis, E. Zampieri, A. Zaretti and in particular C. Bernini, P. Gervasio
and F. Saleri.

We would also wish to thank Ms. R. Holliday for baving edited the lan-
guage of the entire manuscript. Finally, the expert and incredibly adept typ-
ing of the TEX-files by Ms. C. Foglia has been invaluable. ,

Milan and Trento ) Alfio Quarteroni
May, 1994 Alberto Valli

In the second printing of this book we have corrected several misprints,
and introduced some modifications to the original text.

More precisely, we have sligthly changed Sections 2.3.4, 3.4.1, 8.4 and
12.3, and we have added some further comments to Remark 8.2.1. )

We have also completed the references of those papers appeared after
1994.

Milan and Trento , Alfio Quarteroni
December, 1996 Alberto Valli
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1. Introduction

Numerical approximation of partial differential equations is an important
branch of Numerical Analysis. Often, it demands a knowledge of many aspects
of the problem.

First of all, the physical background of the problem is required in order
to understand the behaviour of expected solutions. This may often lead to
the choice of convenient numerical methods.

Secondly, modern formulation of the problem based on the variational
(weak) form ought to be considered, as it allows the search for generalized
solutions in Hilbert (or Banach) functional spaces. Variational techniques
yield a-priori estimates for the solution, which in turn indicate in which kind
of norms any virtual numerical solution can be proven to be stable. Further-
more, results about smoothness of the mathematical solutions may suggest .
the numerical methodology to be used, and consequently, determine the kind
of accuracy that can be achieved. The latter is pointed out from the error
analysis.

Clearly, specific attention should be paid to the algorithmic aspects con-
cerned with the choice of any numerical method.

This book aims at providing general ideas on numerical approximation of
partial differential equations, although (obviously) not all possible existing
methods will be considered. In this respect, we mainly focus on variational.
numerical methods for the discretization of space derivatives, and on finite
difference and fractional-step methods for advancing, in time, unsteady prob-
lems.

Whenever possible, we present the unifying approach behind a-priori dif-
{ferent numerical strategies, provide general theory for analysis and illustrate
a variety of algorithms that can be used to compute the effective numeri-
cal solution of the problem at hand, taking into consideration its algebraic
structure. Consequently, we try to avoid using technicalities (or tricks, or
algorithms) that work only in very specific situations, or that are not sus-
tained from a sound theoretical background. Some problems (and methods)
are discussed on a case-to-case basis, but very often they are included in a
single logical unit (say Chapter, or Section).



2 1. Introduction

1.1 The Conceptual Path Behind the Approximation

We consider a great number of mathematical problems, and numerical meth-
ods for their solution. For the approximation of any given boundary value
problem, we schematically illustrate in Fig. 1.1.1 the decision path that needs
to be followed.

Level (1] is the boundary value problem at hand under its weak formula-
tion accounting for the prescribed boundary conditions.

Level [2] provides the kind of discretization (or numerical method) that
can be pursued in order to reduce the given problem to one having finite
dimension. Of course, the strategy adopted will determine the structure of
the numerical problem.

Throughout this book we mainly consider two kinds of discretization.
The former is the Galerkin method, together with its remarkable variant, the
Petrov-Galerkin method, which is based on an integral formulation of the
differential problem. The second discretization we consider, is the collocation
method, which is, instead, based on the fulfillment of the differential equations
at some selected points of the computational domain. We then reformulate the
collocation method under a generalized Galerkin mode, precisely combining
the Galerkin approach with numerical evaluation of integrals using Gaussian
formulae.

At a lower extent, we will address finite difference schemes for space dis-
cretization, especially for nonlinear convection-diffusion equations and for
problems of wave propagation. For the latter we will also present the approach
based on the finite volume method, which is very popular in computational
fluid dynamics.

Finally, we will illustrate shortly the elementary principles of the domain
decomposition method, an approach which offers the best promise for the
parallel solution of large problems in the field of scientific computing.

Other approaches are often encountered in the literature as well, but they
will only be addressed incidentally in this book.

Level [3] specifies the nature of the subspaces used in the approximation.
Typically, we have piecewise-polynomial functions of low degree when using
finite elements, and global algebraic polynomials of high degree for spec-
tral methods. These two remarkable cases will be discussed and analyzed in
some of their variants (mixed finite elements, Legendre and Chebyshev spec-
tral collocation methods). The choice operated at this level determines the
functional structure of the numerical solution, the kind of accuracy that can
be achieved, besides affecting the topological form of the resulting algebraic
system.

At level [4] the selection of convenient algorithms needs to be accom-
plished to solve the algebraic problem, exploiting, at most, the topological
structure and the properties of the associated matrices. We illustrate all the
important methods available nowadays for solving large scale symmetric and



