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PREFACE

Because polarized light is being used increasingly—by physicists,
chemists, biologists, metallurgists, mmeralogxsts, mechanical engineers,
and electronics engineers—the need for a serious book on the produc-
tion and use of polarized light has become increasingly evident. Every
year hundreds of additional articles dealing with polarized light appear
in various scientific journals. New applications are constantly being

reported. But there has been no book to delineate the central concepts,

to indicate a comprehensive terminology, to compare the different

types of polarizers, and to present the rules governing the combinations

of polarizers and retardation plates. There has been no careful review
of the hundreds of kmds of applications, and no substantial bibliog-
_ raphy.

_ The most important event in the modern history of polarized light
was the invention of the sheet-type polarizer, by Edwin Herbert Land
in 1928. His invention of the microcrystalline species of sheet-type
polarizer (J-sheet), and the later invention by Land and his asseciates
of the molecular species (H-sheet, K-sheet, HR-sheet, and so forth),
provided scientist and engineer with polarizers having almost every
desirable feature. Nearly every branch of science has felt the impact
of these inventions. Yet the technology of these modern polarizers has
received scant mention in the scientific literature.

Four powerful tools for predicting the effects of polarizers, retarda-
tion plates, and so on have recently come into prominence, but have
not been discussed in available textbooks in a serious, systematic way.
The new tools are the Stokes vector, the Poincaré sphere, the Mueller
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calculus, and the Jones calculus. They make it possible to calculate
with ease the behavior of polarizer-retarder combinations that formerly
seemed almost hopelessly complicated. Here we describe the tools in
detail and illustrate their use. In addition, all the commonly required
matrices of the Mueller and Jones calculi are listed, for ready reference.

The author’s early training in polarization phenomena was acquired
in the research laboratory directed by Dr. E. H. Land. The writings
by Dr. Land and his colleagues Dr. Cutler D. West and Dr. R. Clark
Jones established the foundations on which this book is based.

The author’s debt to Dr. R. Clark Jones, the inventor of the Jones
calculus, is immeasurable. The sections dealing with the Stokes vector,
the Mueller calculus, and the Jones calculus could not have been
written without long and painstaking coaching by him. The help
received from E. S. Emerson and A. S. Makas in various practical
aspects of polarizer technology has been of great value. Many other
colleagues have belped, directly or indirectly, to make this mono-
graph possible.

' ‘ W. A. Shurcliff
Ca.mbridge, Massachusetts
August 25, 1961
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CONVENTIONAL DESCRIPTION
OF POLARIZED LIGHT ‘

1.1. Imtroduction. In this book the term light stands for electromag-
netic radiation. Usually we have in mind the 400700 mu range (visual
range), but often we include also the shorter-wavelength range
(ultraviolet) and the longer-wavelength range (infrared). On some
occasions we include also the x-ray and gamma-ray ranges and the
radio range. The total range in which polanzatlon plays a part covers
more than sixty octaves.

Polarized light is one of nature’s ultimates. A slender, monochro-
matic, polariged ray cannot be subdivided into simpler components:
no sunpler components ex15t ’I‘he process of analysis can advance no
further. -

There is much to be gained, however,; by considering how a beam
of polarized light behaves and how it may be depicted. When such a
beam encounters a birefringent crystal, a dichroic film, or an oblique
dielectric surface, a great variety of behaviors may result. The ques-
tion is: Can we find, for the polarized beam, a representation so
pertinent and so versatile that, merely by examining the representa-
tion, we can predict the outcome of any given encounter?

Fortunately, several highly successful representations have been
invented. Some dre pictorial, others mathematical. Some are well
suited to solving simple problems, others are to be preferred when
the problems are comphcated

To ask whether a given representation is “true” is futile. It must
suffice that the representation assists ready recollection of the be-
havior and permits edsy solution of the various problems encountered.
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The present chapter reviews the classical (pictorial and wave-train)
methods of representing polarized light. Chapter 2 consxders certain -
more modern and more powerful methods.

Polarized light, besides being of interest -per se, serves as a tool, or
probe, for evaluating the properties of matter. The tool exhibits the
ultimate in speed, and perhaps the ultimate in delicacy and conven-
ience. It has the merit of being completely convertible; that is, the

" polarization form can be altered at will, with no loss in power and no

increase in entropy flux. In many respects, polarized light, being the
simplest kind of light, is easier to deal with than ordinary light: the
physical manipulations may be cleaner, and the mathematical pro-
cedures for predicting the experimental outcomes are simpler. Physi-
cists and chemists find that polarized light has uses far beyond those
of unpolarized light. Biologists, astronomers, and engineers find that
polarized light solves many problems that are otherwise insoluble. If
light is man’s most useful tool, polarized light is the quintessence of
utility.

In preparing this book the author faced a major problem as to
conventions. The crux of the problem was the large number of branches
of optics that must be brought into one consistent family. Tradi-
tionally, users of saccharimeters and other polarimeters employ a
certain set of sign conventions, persons dealing with dichroism employ
certain conventions, and similarly for persons dealing with crystal-
lography, wave theory, the Stokes vector, the Poincaré sphere, the
Mueller calculus, and the Jones calculus. Ordinarily, the incompatibil-
ity of the various sets of conventions as to signs, handedness, etc., is
unnoticed and unimportant. In this book, however, one universally
self-consistent set of conventions is mandatory. Accordingly, some
conflict with various lesser sets is unavoidable.

1.2. Classical Pictorial Specification of a Polarized Wave Train. The
classical description of a polarized wave train is well known (see, for
example, Ditchburn, D-10, and Jenkins and White, J-9), and needs
only brief review here.

From the standpoint of classical physics, light consists of electro-
magnetic waves whose vibrations are transverse to the propagation
direction. Polarized light is light whose vibration pattern exhibits
preference: preference as to transverse direction, or preference as to
the handedness associated therewith. Different kinds of preference are
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indicated in Fig. 1.1. Each drawing, called a snapshot pattern, de-
scribes the monochromatic wave train at a single instant in time; the
curve may be thought of as a smooth line joining the tips of a large
number of vectors that indicate the directions and magnitudes of the
eleciric field at various positions along the center line of the beam. The
convention with respect to right and left circular polarization is easily
remembered: right circular polarization is portrayed by means of a
right-handed helix, such as the thread of a typical machine screw.

SAvAVIVA P
(c) \CQ@ (d) /@@

Fi16. 1.1. Snapshot patterns of a horizontally traveling beam of monochromatic

light that is polanzed (a) horizontally, (b) vertically, (¢) right circularly, and (d)
left circularly.

(The reader will recall that a right-handed helix continues to appear
right-handed no matter what the observer’s viewpoint; consequently
* the present definition is free from ambiguity.) The pattern may be
drawn with respect to a right-handed set of cartesian coordinates, Z
being the direction of propagation, and X and Z being horizontal.

Workers ‘in different fields (such as crystallography, theoretical
physics, saccharimetry, radio technology) may employ conflicting
definitions. The definitions used in this book are believed to represent
the best compromise. Care has been taken to word the definitions
clearly and to use them consistently.

- One could, of course, deal with the magnetic, rather than the elec-
tric, vibration. When light is traveling in a vacuum or other isotropic
medium, these two vibrations are orthogonal (perpendicular) and
their magnitudes are always proportional to one another. To specify
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one is tantamount to specifying both: The decision to concentsate on
the electric vibration is conventional, and pays tribute to the dominant
role of the electric vector in the more familiar absorption processes.

The sectional patiern (Fig. 1.2) is perhaps the most familiar of all
the characterizations. A horizontally polarized beam is portrayed as a

(Q) | v : (e) /A/fzo‘

(b) » (f) N\

&

(_C) (g) :

(d)

Fio. 1.2, Sectional pattem of a beam polarized (s) horizontally, (b) vertically,
(c) right circularly, (d) left circularly, (¢) linearly at 20°, (/) linearly at —45°,
(g) right elliptically at 45°, ‘

short horizontal line; vertical polarization is indicated by a vertical
line. Right-circular polarization is portrayed by a circle having a
clockwise sense. The sectional pattern may be thought of as an end
view of the snapshot pattern, as seen by an observer who is situated
in the path of the beam (specifically; far out on the Z-axis) and is
looking toward the light source, which is at the origin of coordinates.
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The clockwise sense of the circle describing right-circular polarization
is consistent with the definition involving a right-handed helix: if a
right-handed helix is moved bodily toward an observer (without rota-
tion) through a fixed, transverse, reference plane, the point of inter-
section of helix and plane executes a clockwise circle.

The sectional patterns are easy to draw, even for light that is
polarized elliptically. Also, they can embrace polychromatic light;
however, we must then think of the scale of the pattern as changing
more or less rapidly, depending on the frequency bandwidth of the
beam; consequently the patterns (Fxg 1.3) cease to be of simple,
closed type

(a) (b - ©
FIG 1.3. Appea.ranoe of sectmnal pattern of an elliptically polarized beam having |

small but appreciable bandwidth, assuming observation times of () about 1 cycle,
(3) about 2 cycles, (c) ma.ny cycles,

The general sectional pattern of a monochromatic beam — an el-
- lipse — may be described with the aid of the terms defined in Fig. 1.4.
- The angle o (between the major semiaxis and the X-axis) is called
the azimuth of the sectional pattern; 80° > a > ~90°. The ratio b/a
of the semiaxes is called the ellipticity; the symbol 8 may be used to
represent ‘arc tan b/a; 90° > § > ~90°. Ellipticity is used in prefer-
ence to the eccentricity, which is defined as (a? — 5%)%/%/a.

“In some instances the ratio 4,/A. is of interest; A, is the maximum
value of the ¥-component of the electric vector, and 4, is the maxi-
mum value of the X-component. The angle |arc tan (4,/4.)| will be
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]
I
J
I
I
¢——-—Ax —-—’

Fic. 1.4. Elliptically polarized light. In this example, a = 20°, the ellipticity
b/a = 0.4, and the handedness is clockwise, as judged by an observer situated far
out on the Z-axis and looking backward toward the source, which is at the origin.

called R. When e is in the neighborhood of 2-45°, or when the ellipse
is very slender, the angles |a| and R are not very different, but under
other circumstances they differ greatly.

Polarization Types and Forms. Linear polarization, circular polar-
ization, and elliptical polarization may be referred to as the three

polarization types. Obviously, the elliptical type includes the others as
" special cases; ellipticities of 0 and 1 correspond to linear and circular
polarization respectively. = '

The linear type of polarization includes an infinite number of polar-
1zation forms, differing as to azimuth a. Circular polarization includes
two forms, differing as to handedness. Elliptical polarization includes
an infinite number of forms, differing as to. azimuth, ellipticity, and
handedness. :

Orthogonal Forms. Two forms of linear polarization that differ by
exactly 90° in azimuth are said to be orthogonal, assuming the direc-
tions of propagation to be the same (Fig. 1.5). Right-and left-circularly
polarized beams are orthogonal. Two elliptically polarized beams are
orthogonal if the azimuths of the major axes differ by 90°, the handed-
nesses are opposite, and the ellipticities are identical. ,

Plane of Polarization. The expression plane of polarization, used by
many authors, may be ambiguous. To some authors it means the
plane containing the directions of propagation and of the electric
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@ O Q
Fi1c. 1.5. Orthogonal pairs of bea.ms polarized (e) hnearly, (®) circularly, (¢)
ellipti¢ally.

wbratlon, while to others it means the plane containing the directions
of propagatlon and of the magnetic vibration. Another drawback to
the expression is that an experimenter can easily produce a number of
beams that have the same plane of polarization yet different directions
of electric vibration (Fig. 1.6). Likewise he can produce beams having
different planes of polarization and the same direction of vibration.

M

F16.1.6. Two beams having the same plane of polarization (plane M) yet different

" directions of electric vibration (indicated by hatch marks, all of which lie in plane
M).
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In this book these difficulties are avoided by the expedient of using
terms descriptive of the key quantity, namely, the direction of the
electric vibration. We refer to linearly polarized light and to the
direction of vibration. We avoid expressions such as plane polarized
light, and plane of polayization.

1.8. Mathematical Specification of a Polarized Wave Train. The math-
ematical specification of a wave train is explained in the standard
textbooks on electromagnetic theory (D-10; A-1). Simple, monochro-
matic, linearly polarized trains of plane waves are propagated by
means of transverse displacements varying sinusoidally with time and
with position along the propagation direction. The magnitude £ of
the electric displacement E may be described by an expression such as

£ = sin (wf - 2xZ/N),

where Z is the position along the axis of propagation, A is the wave-
length, w is the angular frequency (27 times the ordinary frequency),
and ¢ is time.

To facilitate computations of certain sorts, one may introduce com-
plex notation. To make the expressions more versatile, one may
include a constant A4, called the magnitude of the peak amplitude,
and a quantity e, called the epoch. The expression may take any of
the followmg forms:

' = Adtite I
= At t—22ZN)
= Agiletet=2eZ/N
, = Ae®, |
where ¢ = € + wi — 2rZ/\. The real part of £ represents the instan-
taneous magnitude of the electric vector E (at time # and position Z).
'The quantity Ae* is called the complex amplitude. The quantity

¢ [= €+ wt — 27Z/)], is the phase angle at time ¢ and position Z.
The intensity of the beam depends on 4, and is, of course, proportional
to A%

The term mtemzty is used in this book in a number of ways. Some-
times it means the total power of the beam. On other occasions it
means power per unit solid angle, or power per unit solid angle and
per unit cross-sectional area. The intended meaning is usually made
clear by the context. Formal definitions of intensity are presented by
Chandrasekhar (C-8).
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~The direction of the electric vector does not appear in the equations,
but may be specified separately — verbally or pictorially; or it may be
specified by including unit vectors i and J, parallel to the X- and
Y-axes respectively.

A circularly polarized beam of monochromatic light may be repre-
sented by a.combination of two expressions, each having a complex
magnitude of the form Ae*. One expression describes the vertical
component (¥-component), and is written 4,¢%; the other describes
the horizontal component (X-component) and is’ written 4.¢. The
amplitudes 4, and 4. are equal, and the phase angles ¢, and ¢, differ
by 90°. If the difference (¢, — @), called 'y, is posu;lve (90°), the light -
is right-circularly polanzed y= -—90 the light is left-cxrcularly
polarized.

In the general case, the Y— and X-components differ in amplitude,
and 7y may have any value; the general sectional pattern is, of course,
an ellipse. If 180° > + > 0°, the handedness is right; if —180° <
v < 0° the handedness is left. When v = 0°, the pattern consists of
a straight line (linear polarization), and when |y| = 90° the pattern
1isa circle. :

To predict the outcome of addmg two monochromatic polanzed
beams, cne adds their instantaneous electric vectors, In general, the
two vectors have different directions in real, three-dimensional space,
different frequencies, and unrelated phases; hence the result of the
addition is a complicated and not very useful expression. In the simple
case in which both beams are linearly polarized and have the same
frequency and same phase, the procedure is simply to add the two
vectors representing the root-mean-square’ electric vibrations of the
two beams (Ref. W-1, p. 27).

If the two linearly polarized beams differ in phase (by some constant
* amount), the procedure is more complicated; if the phase difference
is 180°, and if the two beams have equal intensity, the combined beam
-will have zero intensity. When two cokerent beams intersect at a slight
angle, the phase relation varies, of course, from one point to another
in the region of intersection (as explained in Refs. D-10 and B-43,
coherent beams are beams whose phases have a fixed, or virtually
fixed, relation to one another); consequently the combined beams will
have high intensity at some points and low intensity at others, so
that an inderference pattern results.

- If the beams are completely incoherent, a short-cut procedure is
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available: merely add the intensities of the beams. The sum of the

intengities is the intensity of the combined beam.

- Later chapters make it clear that the combining of beams can usna.lly
be handled more simply by certain modern methods than by the
classical equations presented above. The Stokes vector provides an

ideal basis for treating the combining of incoherent beams; the Jones.

vector is eminently applicable to coherent beams. These vectors are
discussed in Chapter 2.

1.4. Unpolarized Light. Defined operationally; an unpolarized beam '

is a beam that, when operated on by any elementary kind of energy-

conserving device that divides the beam into two completely polarized .
subbeams, yields subbeams that have equal power (in a time interval

long enough to permit the powers to be measured). Thus if a beam is
to qualify as unpelarized, it must exhibit no long-term preference as to
lateral direction of vibration or as to handedness.

Can a perfectly monochromatic beam qualify as unpolarized? Ob-

viously it cannot. Such a beam necessarily has a perfectly regular
wave train, and consequently has a very definite and steady sectional
pattern. Thus it exhibits polarization. Almost perfectly monochro-
matic radio waves are a common occurrence, and are found, of course,
to exhibit a high degree of polarization.

Visible light, however, always possesses an appremable bandwidth.

Accordingly, such a beam may include many different forms of polar- |
ization simultaneously. If an experimenter is unable to detect any

preponderant azimuth or handedness, he will perforce regard the
beam as being unpolarized. (This subject has been explored by
Langsdorf and DuBridge, L-14, and by Birge and DuBridge, B-29.)
In this book the expression “monochromatic light” often appears;
usually it means light that is roughly monochromatic and has sufficient
bandwidth that unpolarized behavior is not precluded.

At most moments, a beam of unpolarized light has, of course, a
sectional pattern that is elliptical. Hurwitz (H{-41) has computed the
average value of ellipticity, which turns out to be tan 15° or 0.268.

No satisfactory way of describing unpolarized light pictorially has
been found. To portray unpolarized light as a many-pointed star or

asterisk is conventional, but without scientific merit; the portrayal

fails to suggest the most prominent features of unpolarized light: its
constantly changing, predominantly elliptical, character.



