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Introduction

This book is about games people play and puzzles people solve, viewed from
the perspective of computer science—in particular computational complex-
ity. Over the years, we have found increasingly deep connections between
games, puzzles, and computation. These connections are interesting to us
from multiple perspectives. As game players and puzzle solvers, we find
underlying mathematical reasons that games and puzzles are challenging,
which perhaps explain why they are so much fun. As computer scientists,
we find that games and puzzles serve as powerful models of computation,
quite different from the usual models of automata and circuits, offering a
new way of thinking about computation.

This book has three main parts, and different parts may be of interest
to different readers.

Part T (Games in General) describes a framework we have developed
for studying the connections between games, puzzles, and computation,
called constraint logic. This framework defines one simple prototypical
game/puzzle that can be interpreted in a variety of settings. We can vary
the number of players: one-player puzzles, two-player games, multiplayer
team games, or, at the other extreme, zero-player automata. We can also
vary how many moves for which the game lasts, or whether the players
can hide information (like cards) from each other. In each such category
of games, we prove that the corresponding form of constraint logic is the
computationally most difficult game in that category, making it a natural
point of reference from the computer-science perspective. This part of the
book is fairly technical, building a mathematical foundation for particular
constraint logics and establishing their computational complexity. Readers
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Figure 1.1. Dad’s Puzzle, one of the earliest (c. 1909) and most popular sliding
block puzzles [71]. The solver must slide the nine rectangular pieces within the
4 x 5 box to get the large square into the lower-left corner. The shortest solution
takes a whopping 59 moves.

uninterested in the details, however, can simply read the summaries in the
two short opening chapters, 2 and 3.

Part II (Games in Particular) applies the constraint-logic framework
to real games and puzzles that people play. The approach is to take a
real game or puzzle and show that it is computationally as hard as the
corresponding form of constraint logic, making the real game/puzzle also
computationally most difficult in its category. The intuition is that most
“interesting” games are the most difficult in their class, so as a result
we end up with many “equally difficult” games (when held up to the
fairly course grain of computational complexity theory). What is inter-
esting is that many real games and puzzles can be closely modeled within
the constraint-logic framework, making it fairly easy to establish these
complexity results.

Constraint logic started out as a tool for understanding the complexity
of sliding-block puzzles, such as the puzzle shown in Figure 1.1. Our pursuit
was motivated by a problem posed by Martin Gardner [71]: “These puzzles
are very much in want of a theory. Short of trial and error, no one knows
how to determine if a given state is obtainable from another given state. ...”
The first application of the constraint-logic framework, which we will see
in Section 9.3, shows that these puzzles have no such general theory, in a
computational sense: no efficient procedure can tell whether a given state
is obtainable from another, assuming standard beliefs in computational
complexity. From there, the theory of constraint logic grew to increasing
generality, capturing more and more types of real games and culminating
in this book.

The third main part of this book, Appendix A (Survey of Games and
Their Complexities), serves as a reference guide for readers interested in the
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computational complexity of particular games, or interested in open prob-
lems about such complexities. While Part II establishes the complexity
of many games, it focuses on applications of the constraint-logic frame-
work, and currently not all game-complexity results fit this framework.
Appendix A surveys all known results, in addition to highlighting many
open problems.

The rest of this introduction gives the reader some basic background
on the two main concepts of this book —games/puzzles and complexity-
followed by a more detailed overview of the constraint-logic framework.

1.1  Whatis a Game?

The term game means different things to different people in different fields.
Our use intends to capture the kinds of games that people play, includ-
ing board games like Chess, Checkers, and Go; card games like Poker
and Bridge; one-player puzzles like Rush Hour, Peg Solitaire, and Sliding
Blocks; and zero-player automata like John Conway’s Game of Life.

Common to all of these games are four main features: positions, players,
moves, and goals. Every game we consider has finitely many possible po-
sitions: board configurations, card distributions, piece arrangements, etc.
In computer-science terminology, our games have a bounded state, a finite
amount of information that defines the current situation. Some number
of players manipulate the game position by individual mowves. The players
take turns in some order; the next player to move can be viewed as part of
the game position. During each turn, the current player has a clear list of
allowable moves (defined by the rules of the game) and picks one of them.
The move transforms the game position into some other game position, in
particular advancing to the next player in whatever order is determined by
the game. Players may not be able to observe certain parts of the game
position, allowing players to have hidden states such as cards in a hand,
but this hidden state should not prevent a player from determining their
allowable moves. Each player has a goal: to reach a game position with a
particular property. The first player to reach their goal wins. We generally
assume optimal play: players try to win as best they can given the available
information. Although we do not directly consider games with randomness
such as dice rolls in this book, we can model such phenomena by supposing
that one player plays randomly instead of following optimal play (as in
[131]).

This informal definition is related to several types of games studied in
a variety of fields. To provide some context for our study of games, we
summarize the related results and differences in these fields.
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Combinatorial Game Theory. One closely aligned study of games is combi-
natorial game theory, as in the two classic books Winning Ways [8] and On
Numbers and Games [27]; see also the more recent introduction Lessons in
Play [3] and the research collections Games of No Chance 1-11I1 [128 130].
The bulk of this study considers two-player games of perfect information,
where every player knows the entire state of the game and the moves avail-
able to each player—mo hidden cards, random dice rolls, etc. Combina-
torial game theory builds a beautiful theory of such perfect-information
two-player games, revealing a rich mathematical structure. Perhaps most
surprising is the connection to number systems: real numbers are special
cases of Conway’s “surreal numbers,” which in turn are special cases of
games, and basic addition carries over to the general case of games.

Perfect information has the attractive consequence that, in principle, a
player could determine the optimal move to make by simulating the entire
game execution, trying every possible move by each player (assuming the
game is finite). Algorithmic combinatorial game theory aims to understand
when there are better strategies than such brute force, and combinatorial
game theory builds a useful collection of tools for understanding such op-
timal strategies in games. In many if not most interesting games, however,
optimal game play is a difficult computational problem, and proving such
results is our purpose in studying the complexity of games.

Economic Game Theory. A less related study of games is (economic) game
theory, as pioneered by the work of John von Neumann [169] and John
Nash [127]. Here, two or more selfish players participate in an economic
event (game), often framed as a single round in which each player simulta-
neously chooses a strategy (or, often, a probability distribution of strate-
gies), and the score (outcome) for each player is a given function of these
strategies. In this context, there is generally no clear optimum strategy,
either globally or for each player. There is, however, a clear set of optimal
strategies for one player when given the strategies of other players, and if
all players simultaneously follow such a strategy, the strategies are in Nash
equilibrium. Nash [127] proved that all games have such an equilibrium,
with the idea that players’ strategies will eventually converge to one. On
the other hand, theoretical computer scientists [23,34] recently established
that finding a Nash equilibrium is computationally intractable (formally,
PPAD-complete), so players of normal computational power will in general
take a long time to converge to a Nash equilibrium. More generally, eco-
nomic game theory studies a wide variety of different notions of equilibria
and the properties they possess.

The games we consider are both more specialized and more general than
what is traditionally addressed by game theory: more specialized because
we are concerned only with determining the winner of a game, and not



