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Signals
and Signal Processing

Signals play an important role in our daily life. Examples of signals that we encounter frequently are
speech, music, picture, and video signals. A signal is a function of independent variables such as time,
distance, position, temperature, and pressure. For example, speech and music signals represent air pressure
as a function of time at a point in space. A black-and-white picture is a representation of light intensity
as a function of two spatial coordinates. The video signal in television consists of a sequence of images,
called frames, and is a function of three variables: two spatial coordinates and time.

Most signals we encounter are generated by natural means. However, a signal can also be generated
synthetically or by computer simulation. A signal carries information, and the objective of signal processing
is to extract useful information carried by the signal. The method of information extraction depends on the
type of signal and the nature of the information being carried by the signal. Thus, roughly speaking, signal
processing is concerned with the mathematical representation of the signal and the algorithmic operation
carried out on it to extract the information present. The representation of the signal can be in terms of basis
functions in the domain of the original independent variable(s), or it can be in terms of basis functions
in a transformed domain. Likewise, the information extraction process may be carried out in the original
domain of the signal or in a transformed domain. This book is concerned with discrete-time representation
of signals and their discrete-time processing.

This chapter provides an overview of signals and signal processing methods. The mathematical char-
acterization of the signal is first discussed along with a classification of signals. Next, some typical signals
are discussed in detail, and the type of information carried by them is described. Then, a review of some
commonly used signal processing operations is provided and illustrated through examples. A brief review
of some typical signal processing applications is discussed next. Finally, the advantages and disadvantages
of digital processing of signals are discussed.

1.1 Characterization and Classification of Signals

Depending on the nature of the independent variables and the value of the function defining the signal,
various types of signals can be defined. For example, independent variables can be continuous or dis-
crete. Likewise, the signal can either be a continuous or a discrete function of the independent variables.
Moreover, the signal can be either a real-valued function or a complex-valued function,

A signal can be generated by a single source or by multiple sources. In the former case, it is a scalar
signal, and in the latter case, it is a vector signal, often called a multichannel signal.

A one-dimensional (1-D) signal is a function of a single independent variable. A two-dimensional (2-D)
signal is a function of two independent variables. A multidimensional (M-D) signal is a function of more
than one variable. The speech signal is an example of a 1-D signal where the independent variable is time.
An image signal, such as a photograph, is an example of a 2-D si gnal where the two independent variables
are the two spatial variables. Each frame of a black-and-white video signal is a 2-D image signal that is
a function of two discrete spatial variables, with each frame occurring sequentially at discrete instants of
time. Hence, the black-and-white video signal can be considered an example of a three-dimensional (3-D)
signal where the three independent variables are the two spatial variables and time. A color video signal
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is a three-channel signal composed of three 3-D signals representing the three primary colors: red, green,
and blue (RGB). For transmission purposes, the RGB television signal is transformed into another type of
three-channel signal composed of a luminance component and two chrominance components.

The value of the signal at a specific value(s) of the independent variable(s) is called its amplitude. The
variation of the amplitude as a function of the independent variable(s) is called its waveform.

For a 1-D signal, the independent variable is usually labeled as time. If the independent variable is
continuous, the signal is called a continuous-time signal. 1f the independent variable is discrete, the signal
is called a discrete-time signal. A continuous-time signal is defined at every instant of time. On the
other hand, a discrete-time signal takes certain numerical values at specified discrete instants of time, and
between these specified instants of time, the signal is not defined. Hence, a discrete-time signal is basically
a sequence of numbers.

A continuous-time signal with a continuous amplitude is usually called an analog signal. A speech
signal is an example of an analog signal. Analog signals are commonly encountered in our daily life and are
usually generated by natural means. A discrete-time signal with discrete-valued amplitudes represented
by a finite number of digits is referred to as a digital signal. An example of a digital signal is the digitized
music signal stored in a CD-ROM disk. A discrete-time signal with continuous-valued amplitudes is called
a sampled-data signal. This last type of signal occurs in switched-capacitor (SC) circuits. A digital signal
is thus a quantized sampled-data signal. Finally, a continuous-time signal with discrete-valued amplitudes
has been referred to as a quantized boxcar signal [Ste93]. The latter type of signals occurs in digital
electronic circuits where the signal is kept at fixed level (usually one of two values) between two instants
of clocking. Figure 1.1 illustrates the four types of signals.

The functional dependence of a signal in its mathematical representation is often explicitly shown. For
a continuous-time 1-D signal, the continuous independent variable is usually denoted by 7, whereas for
a discrete-time 1-D signal, the discrete independent variable is usually denoted by n. For example, u(r)
represents a continuous-time 1-D signal and {v[n]} represents a discrete-time 1-D signal. Each member,
v[n], of a discrete-time signal is called a sample. In many applications, a discrete-time signal is generated
from a parent continuous-time signal by sampling the latter at uniform intervals of time. If the discrete
instants of time at which a discrete-time signal is defined are uniformly spaced, the independent discrete
variable n can be normalized to assume integer values.

In the case of a continuous-time 2-D signal, the two independent variables are usually the spatial
coordinates, which are usually denoted by x and y. For example, the intensity of a black-and-white image
can be expressed as u(x, y). A color image u(x, y). is composed of three signals representing the three
primary colors, red, green, and blue:

rix,y)
u(x,y) =1 glx,y)
b(x,y)

On the other hand, a digitized image is a 2-D discrete signal, and its two independent variables are
discretized spatial variables often denoted by m and n. Hence, a digitized image can be represented as
v[m, n]. Likewise, a black-and-white video sequence is a 3-D signal and can be represented as u(x, y, 1),
where x and y denote the two spatial variables and ¢ denotes the temporal variable time. A color video
signal is a vector signal composed of three video signals representing the three primary colors, red, green,
and blue.

There is another classification of signals that depends on the certainty by which the signal can be
uniquely described. A signal that can be uniquely determined by a well-defined process such as a math-
ematical expression or rule, or table look-up, is called a deterministic signal. A signal that is generated
in a random fashion and cannot be predicted ahead of time is called a random signal. In this text, we are
primarily concerned with the processing of discrete-time deterministic signals.

Some typical signal processing operations performed on analog signals are reviewed in the following
section. -



