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Foreword

This book is an introduction to several active research topics in Foliation Theory.
It is based on lecture notes of some of the courses given at the school Advanced
Course on Foliations: Dynamics, Geometry, Topology, held in May 2010 at the
Centre de Recerca Matematica (CRM) in Bellaterra, Barcelona. This school was
one of the main activities of the Research Programme on Foliations, which took
place at the CRM from April to July 2010. The program of that event consisted of
five courses taught by Aziz El Kacimi-Alaoui, Steven Hurder, Masayuki Asaoka,
Ken Richardson, and Elmar Vogt.

These courses dealt with different aspects of Foliation Theory, which is the
qualitative study of differential equations on manifolds. It was initiated by the
works of H. Poincaré and I. Bendixson, and later developed by C. Ehresmann,
G. Reeb, A. Haefliger, S. Novikov, W. Thurston and many others. Since then, the
subject has become a broad research field in Mathematics.

The course of Aziz El Kacimi-Alaoui is an elementary introduction to this
theory. Through simple and diverse examples, he discusses, in particular, the fun-
damental concept of transverse structure.

The lectures of Steven Hurder develop ideas from smooth dynamical systems
for the study and classification of foliations of compact manifolds, by alternating
the presentation of motivating examples and related concepts. The first two lec-
tures develop the fundamental concepts of limit sets and cycles for leaves, foliation
“time” and the leafwise geodesic flow, and transverse exponents and stable mani-
folds. The third lecture discusses applications of the generalization of Pesin Theory
for flows to foliations. The last two lectures consider the classification theory of
smooth foliations according to their types: hyperbolic, parabolic or elliptic.

For a smooth locally free action, the collection of the orbits forms a foliation.
The leafwise cohomology of the orbit foliation controls the deformation of the
action in many cases. The course by Masayuki Asaoka starts with the definition
and some basic examples of locally free actions, including flows with no stationary
points. After that, he discusses how to compute the leafwise cohomology and how
to apply it to the description of deformation of actions.

In the lectures given by Ken Richardson, he investigates generalizations of
the ordinary Dirac operator to manifolds endowed with Riemannian foliations or
compact Lie group actions. If the manifold comes equipped with a Clifford algebra



vi Foreword

action on a bundle over the manifold, one may define a corresponding transversal
Dirac operator. He studies the geometric and analytic properties of these operators,
and obtains a corresponding index formula.

We would like to express our deep gratitude to the authors of these Advanced
Courses for their enthusiastic work, to the director, J. Bruna, and the staff of the
CRM, whose help was essential in the organization of these Advanced Courses, and
to C. Casacuberta, editor of this series, for his help and patience. We also thank
the “Ministerio de Educacién y Ciencia” and the Ingenio Mathematica programme
of the Spanish government for providing financial support for the organization of
the courses.

Jestis A. Alvarez Lopez and Marcel Nicolau
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Chapter 1

Deformation of Locally Free
Actions and Leafwise
Cohomology

Masayuki Asaoka

Introduction

These are the notes of the author’s lectures at the Advanced Course on Foliations
in the research program Foliations, which was held at the Centre de Recerca
Matematica in May 2010. In these notes, we discuss the relationship between
deformations of actions of Lie groups and the leafwise cohomology of the orbit
foliation.

In the early 1960’s, Palais [44] proved the local rigidity of smooth actions of
compact groups. Hence, such actions have no non-trivial deformations. In contrast
to compact group actions, all known R-actions (i.e., flows) fail to be locally rigid,
except for the trivially rigid ones. Moreover, many R-actions change the topological
structure of their orbits under perturbation. Their bifurcation is an important issue
in the theory of dynamical systems.

In the last two decades, it has been found that there exist locally rigid actions
of higher-dimensional Lie groups, and the rigidity theory of locally free actions has
undergone a rapid development. The reader can find examples of locally rigid or
parameter rigid actions in many papers [5, 9-12, 18, 24, 32, 33, 36, 41, 42, 49, 51-
53], some of which will be discussed in this chapter.

A rigidity problem can be regarded as a special case of a deformation problem.
In many situations, the deformation space of a geometric structure is described
by a system of non-linear partial differential equations. Its linearization defines
a cochain complex, called deformation complex, and the space of infinitesimal
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deformations is identified with the first cohomology of this complex. For locally
free actions of Lie groups, the deformation complex is realized as the (twisted)
leafwise de Rham complex of the orbit foliation.

The reader may wish to develop a general deformation theory of locally free
actions in terms of the deformation complex, like the deformation theory of com-
plex manifolds founded by Kodaira and Spencer. However, the leafwise de Rham
complex is not elliptic, and this causes two difficulties to develop a fine theory.
First, the leafwise cohomology groups are infinite-dimensional in general, and they
are hard to compute. Second, we need to apply the implicit function theorem for
maps between Fréchet spaces rather than Banach spaces because of loss of deriva-
tives. This requires tameness of splitting of the deformation complex, which is
hard to prove. Thus, we will focus on techniques to overcome these difficulties in
several explicit examples instead of developing a general theory.

The main tools for computation of the leafwise cohomology are Fourier analy-
sis, representation theory, and a MayerVietoris argument developed by El Kacimi
Aloui and Tihami. Matsumoto and Mitsumatsu also developed a technique, based
on ergodic theory of hyperbolic dynamics. We will discuss these techniques in
Section 1.3.

For several actions, the deformation problem can be reduced to a linear one
without help of any implicit function theorem, and hence we can avoid a tame
estimate of the splitting. In Section 1.4 we will see how to reduce the rigidity
problem of such actions to (almost) vanishing of the first cohomology of the leaf-
wise cohomology. The first case is parameter deformation of abelian actions. We
will see that the problem is linear in this case. In fact, the deformation space can
be naturally identified with the space of infinitesimal deformations. The second
case is parameter rigidity of solvable actions. Although the problem itself is not
linear in this case, we can decompose it into the solvability of linear equations for
several examples.

For general cases, the deformation problem cannot be reduced to a linear
one directly. One way to describe the deformation space is to apply Hamilton’s
implicit function theorem. As mentioned above, this requires a tame estimate on
solutions of partial differential equations and is difficult to establish it in general.
However, there are a few examples to which we can apply the theorem. Another
way is to use the theory of hyperbolic dynamics. We offer a brief discussion of
these techniques in Section 1.5.

The author recommends to the readers the survey papers [7] and [39]. The
former contains a nice exposition of applications of Hamilton’s implicit function
theorem to rigidity problems of foliations. The second is a survey about the pa-
rameter rigidity problem, which is one of the sources of the author’s lectures at
the Centre de Recerca Matematica.

To end the Introduction, I would like to thank the organizers of the CRM
research program Foliations for inviting me to give these lectures in the program,
and the staff of the CRM for their warm hospitality. I am also grateful to Marcel
Nicolau and Nathan dos Santos for many suggestions to improve the notes.
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1.1 Locally free actions and their deformations

In this section we define locally free actions and their infinitesimal correspondent.
We also introduce the notion of deformation of actions and several concepts of
finiteness of codimension of the conjugacy classes of an action in the space of locally
free actions.

1.1.1 Locally free actions

In these notes, we will work in the C'*-category. So, the term smooth means C*°,
and all diffeomorphisms are of class C°°. All manifolds and Lie groups in these
notes will be connected. For manifolds M, and M, we denote the space of smooth
maps from M; to My by C(M;, M,). It is endowed with the C'*° compact-open
topology. By F(x) we denote the leaf of a foliation F which contains a point x.

Let G be a Lie group and M a manifold. We denote the unit element of G by
1¢; and the identity map of M by Id,;. We say that a smooth map p: M xG — M
is a (smooth right) action if

(1) p(z,1¢) = x for all x € M, and
(2) p(x,gh) = p(p(z,g),h) for all z € M and g, h € G.

For p € C°(M x G,M) and g € G, we define a map p?: M — M by p?(x) =
p(x, g). Then pis an action if and only if the map g — p? is an anti-homomorphism
from G into the group Diff ™ (M) of diffeomorphisms of M. By A(M, G) we denote
the subset of C°°(M x G, M) that consists of actions of G. It is a closed subspace
of C*(M x G,M). For p € A(M.G) and x € M, the set

={r’(x)| g € G}
is called the p-orbit of x.

Example 1.1.1. A(M,G) is non-empty for all M and G. In fact, it contains the
trivial action piiv, which is defined by piiv(2, g) = . For every x € M we have
that O,,,.. (z) = {z}.

Let us introduce an infinitesimal description of actions. By X(M) we denote
the Lie algebra of smooth vector fields on M. Let g be the Lie algebra of G and
Hom(g, X(M)) be the space of Lie algebra homomorphisms from g to X(M). In
these notes, we identify g with the subspace of X(G) consisting of vector fields in-
variant under left translations. Each action p € A(M, G) determines an associated
infinitesimal action 1,: g— X (M) by

1,(§)(z) = = p(x, exp t€)

at” -

Proposition 1.1.2. I, is a Lie algebra homomorphism from g to X(M).
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Proof. By LxY we denote the Lie derivative of a vector field Y with respect to
(along) another vector field X. Take £, 7 € g and = € M. Then,

[p(8), Lo(m(z) = (L1, Lp(m))(2)

_ tli_r)no % {Dpexp(—tf)(]p(,n) (pexp(tﬁ)(x))) _ ]p(n)(-r)}

s=0

d(d
-4 { B (o019 o peepten) o po0()) )

t=0

— | ot xplte) explon) exp(—19) B

(3:7 exp(tAdcxp(th))

d
at” t=0
= L([¢, n])(). O

Proposition 1.1.3. Two actions p1,p2 € A(M,G) coincide if I,, = 1,,. If G is
simply connected and M is closed, then any I € Hom(g, X(M)) is the infinitesimal
action associated with some action in A(M, Q).

Proof. Let p1,p2 € A(M,G). The curve t — p;(x,exp(tf)) is an integral curve
of the vector field 1,,(§) for all z € M, { € g, and i = 1,2. If I,, = I,,, then
the uniqueness of integral curves implies that p;(z,exp(t§)) = p2(z,exp(t§)) for
allz € M, t € R, and £ € g. Since the union of one-parameter subgroups of G
generates G, we have p; = pa.

Suppose that G is simply connected and M is a closed manifold. Let E be
the subbundle of T(M x G) given by

E(z,9) = {(I(€)(2),£(9)) € Tz, (M x G) | € € g}.

For all £, &’ € g, we have

[(1(£),€), (1(€),€")] = (11(6), I(€")]. [6,€']) = (L([&,€D), [€:€1)-

By Frobenius’ theorem, the subbundle F is integrable. Let F be the foliation
on M x G generated by E. The space M x G admits a left action of G defined
by g (z,9') = (z,g¢’). The subbundle E is invariant under this action. Hence,
we have g - F(z,g9') = F(z,gg’). Since M is compact, G is simply connected,
and the foliation F is transverse to the natural fibration 7: M x G — G, the
restriction of 7 to each leaf of F is a diffeomorphism onto G. So, we can define
a smooth map p: M x G — M such that F(z,1¢) N7 1(g9) = {(p9(z),9)}. Take
z € M and g,h € G. Then (p? o p"(x), g) is contained in F(p"(z), 1g). Applying
h from the left, we see that (p9 o p/(z), hg) is an element of F(p"(z),h). Since
F(p"(z),h) = F(x,1¢) and {(p"?(z), hg)} = F(x,1¢) N7 (hg) by the definition
of p, we have p? o pl'(z) = p"9(x). Therefore, p is a right action of G. Now it is
easy to check that I, = 1I. O
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We say that an action p € A(M,G) is locally free if the isotropy group
{g € G| p(z) = z} is a discrete subgroup of G for every x € M. By ALr(M, G)
we denote the set of locally free actions of G' on M. Of course, the trivial action
is not locally free unless M is zero-dimensional. The following is a list of basic
examples of locally free actions.

Example 1.1.4 (Flows). A locally free R-action is just a smooth flow with no
stationary points. We remark that Apr(M,R) is empty if M is a closed manifold
with non-zero Euler characteristic.

Example 1.1.5 (The standard action). Let G be a Lie group, and I' and H be closed
subgroups of G. The standard H-action on T'\G is the action pr € A(T\G, H)
defined by pr(T'g, h) = ['(gh). The action p is locally free if and only if g~ 'TgN H
is a discrete subgroup of H for every g € G. In particular, if T itself is a discrete
subgroup of G, then pr is locally free.

Example 1.1.6 (The suspension construction). Let M be a manifold and G be a
Lie group. Take a discrete subgroup I' of G, a closed subgroup H of G, and a left
action o: ' x M -+ M. We put M X, G = M x G/(z,g9) ~ (o(v,2),7g). Then
M x, G is an M-bundle over I'\G. We define a locally free action p of H on
M X G by p([z, g, h) = [z, gh].

We say that a homomorphism I: g— X(M) is non-singular if I(§)(xz) # 0
for all £ € g\ {0} and z € M.

Proposition 1.1.7. An action p € A(M,G) is locally free if and only if I, is non-
singular.

Corollary 1.1.8. For any p € App(M,G), the orbits of p form a smooth foliation.
If the manifold M 1is closed, then the map p(z, -): G— O(x,p) is a covering for
any x € M, where O(z, p) is endowed with the leaf topology.

The proofs of the proposition and the corollary are easy and left to the reader.
If M is closed, then the set of non-singular homomorphisms is an open subset of
Hom(g, X(M)). Hence, Arr(M, Q) is an open subset of A(M,G) in this case.

Let F be a foliation on a manifold M. We denote the tangent bundle of
F by TF and the subalgebra of X(M) consisting of vector fields tangent to F
by X(F). Let ALr(F,G) be the set of locally free actions of a Lie group G whose
orbit foliation is F. The subspace Apr(F,G) of ALr(M,G) is closed and consists
of actions p such that I, is an element of Hom(g, X(F)).

1.1.2 Rigidity and deformations of actions

We say that two actions p; € A(M;,G) and py € A(M,,G) on manifolds M,

and My are (C°°-)conjugate (and write p; ~ py) if there exist a diffeomorphism

h: M; — M5 and an automorphism © of G such that pg)(g) oh = hopi for every

g €aG.
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For a given foliation F on M, let Diff(F) be the set of diffeomorphisms of A
which preserve each leaf of F and Diffy(F) be its arc-wise connected component
that contains Id,;. We say that two actions p1, ps € ApLp(F, G) are (C™°-) param-
eter equivalent (and write p; = po) if they are conjugate by a pair (h,©) such
that h is an element of Diffo(F). It is easy to see that conjugacy and parameter
equivalence are equivalence relations.

The ultimate goal of the study of smooth group actions is the classification
of actions in App(M,G) or A p(F,G) up to conjugacy or parameter equivalence,
for given G and M, or F. The simplest case is that App(M,G) or App(F,G)
consists of only one equivalence class. We say that an action py in ALp(M, G) is
(C*°-)rigid if any action in App(M,G) is conjugate to pg. We say that an action
po whose orbit foliation is F is (C°°-)parameter rigid if any action in App(F,G)
is parameter equivalent to pg.

It is useful to introduce a local version of rigidity. We say that pg is locally
rigid if there exists a neighborhood U of py such that any action in i is conjugate
to pg. We also say that pg is locally parameter rigid if there exists a neighborhood
U of py in A(F,G) such that any action in U is parameter equivalent to py. As
we mentioned in the Introduction, local rigidity for compact group actions was
settled in the early 1960’s.

There exist actions which are locally parameter rigid, but not parameter
rigid. For example, for k € Z, let p;. be the right action of S = R/Z on S! given
by pi.(s) = s+ kt. It is easy to see that p; is locally parameter rigid. Of course, all
the orbits of py coincide with S! for k& > 1. However, py is parameter equivalent to
p1 if and only if |k| = 1, since the mapping degree of pi(s,-) is k. So, p; is locally
parameter rigid, but not parameter rigid.

It is unknown whether every locally parameter rigid locally free action of a
contractible Lie group on a closed manifold is parameter rigid or not.

Theorem 1.1.9 (Palais [44]). Every action of a compact group on a closed manifold
is locally rigid.

As we will see later, many actions of non-compact groups fail to be locally
rigid. Thus, it is natural to introduce the concept of deformation of actions. We
say that a family (p,)uea of elements of A(M,G) parametrized by a manifold A
is a C° family if the map p: (@, g, 1) — pu(x, g) is smooth. By App(M, G A) we
denote the set of C*° families of actions in Ayr(M, G) parametrized by A. Under
the identification with (p,).ea and p, the topology of C>(M x G x A, M) induces
a topology on Apr(M,G; A). We say that (p,,),ea is a (finite-dimensional) defor-
mation of p € A(M,G) if A is an open neighborhood of 0 in a finite-dimensional
vector space and py = p.

In several cases, actions are not locally rigid, but their conjugacy class is
of finite codimension in Apr(M,G). Here we formulate two types of finiteness of
codimension. Let (p,).ca € ALr(M.G:A) be a deformation of p. We say that
(py) uea is locally complete if there exists a neighborhood U of p in Apr (M, G) such
that any action in ¢/ is conjugate to p, for some y1 € A. We also say that (p,).ca is



