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PREFACE

“Social networks™ is no longer a term solely of the academe. A Google search of the term
“social networks™ at the time of writing this Preface yielded over 117,000,000 hits. Searching
for “network analysis™ yielded 6,460,000 hits. This is a field of study drawing upon graph
theory to represent relationships between objects (e.g., websites) and how these form
functional systems. “Social network analysis,” the counterpart of network science focused on
human interactions, yielded 939,000 or close to one million hits. Arguably, the advent of
social media created a cultural meme that carries network concepts forward to general
publics.

Social network analysis is a robust means to measure and map interactive systems. An
approach to dynamically represent interactions among people and how these are organized —
this method can capture ties within a system (e.g., between people) and between systems
(e.g., between humans and other species or between humans and their environments). Due to
inherent flexibility, network analytic approaches are now ubiquitous across any of a number
of theoretical and empirical efforts in fields too numerous to list.

Social network analysis (SNA) focuses on social relationships (e.g., friendship)
diagramed as nodes (points) and links (ties or edges between points). SNA examines features
or changes to a social system illuminated from interactions and how these change over time
(e.g., spread of disease). Social network analysis can measure and map "connectedness" or
"flows" (e.g., information, resources, etc.) both within and across individuals, groups and
organizations, and can locate these in a virtual- or geo-temporal space — yielding rich mixed
methods possibilities (e.g., tying together joint analysis of physical or place-based attributes
with social network attributes).

A notion that originated in sociology over a century ago, a social network is, at its heart, a
social science theoretical concept that has widely spread to become an interdisciplinary
application. As a method, it has yielded highly influential studies that generate implications
beyond qualitative descriptions. For instance, Christakis and Fowler’s 2007 article in the New
England Journal of Medicine that drew upon Framingham Heart Study data, helped mobilize
obesity as a public health priority. While in essence caused by behaviors not pathogens, the
use of network analyses helped characterize obesity as contagious, or a spreading disease, and
effectively conveyed the notion of an *obesity epidemic’ to rally greater public concerns.

Relationships between actors in a social group comprise a general mechanism
underpinning any of a number of key accumulations or traits attributed to a social context or
system — such as capital, efficiency or optimization, evolution, ecology, and spreading of
information or ideas. As the referent of “social networks™ (SN) has spread in academic fields
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as well as general everyday use, so have methods for illuminating and testing its properties
and applications. From the early sociogram methods in sociology, to the advent of
sophisticated visualization techniques, and most recently to its application in big data mining,
the pace of innovation in SN methods and applications of concepts continues unfettered.

The growth and application of methods for studying social networks continues to burgeon
in many fields. Given the scientific advancements in the study of networks over recent
decades, highlights of this approach are now easily found among, and generated by, business,
health, environment, computer science, statistics, economics and biology applications.
Together, social network concepts and related analytic methods have propelled many fields
towards greater understanding of critical phenomena such as infection, popularity or influence
(e.g., page rank), and efficiency or capacity (e.g., transportation or trade).

However, applications of methodological advancements in many fields lag behind the
pace of innovation. And fundamental limitations to surmount, to give this method greater
explanatory (as compared to descriptive) power, have remained. Thus, this book is designed
to promote wider reading about social network advancements across fields to accelerate the
pace of interdisciplinary explorations and potential new discoveries.

The extensiveness and spread of SN theory and SNA’s use and application suggests that
emerging work in the many disciplines applying this field can be culled and encapsulated to
advance research and training widely. Cross-pollination with other fields further astride in
SNA is needed as many sciences (e.g., child development) have omitted foundational
concepts in basic preparation of their future scientists. Our main objective for this volume is
thus to share a wide set of field-specific insights that have the potential to advance other fields
embracing similar foci.

We do so by first discussing conceptual issues in SNA, including the potential for
applications of SN concepts yet to be addressed or encapsulated for wide dissemination
within a particular field of study. For instance, a chapter in this volume poses answers to the
question of what form SNA takes across the “observational-experimental” research design
“continuum,” an important topic in public health sciences. Basic questions about the power or
utility of SN concepts are advanced via literature reviews (e.g., the role of opinion leaders in
purchase behaviors).

Our volume also turns to methodological applications and advances in SNA. Currently,
computer scientists increasingly seek to bring statistical expertise to bear in network analysis
due to a host of unknowns to surmount in SNA. For instance, how do different strategies to
identify a group affect conclusions about membership? How can we address a forgotten, but
omnipresent, dimension of network datasets for valid statistical and causal inference
(violation of independence assumption due to shared group membership) with SN datasets?
Explorations to generate potential solutions or applications are presented.

Our goal for this book is to capture — across a wide range of fields — how emerging issues
in the application of SN theory and SNA are being addressed. How to press forward past
edges of our knowledge are illuminated as such a diverse set of authors” disciplinary expertise
are brought to SNA. Each chapter selected illuminates new trends or applications that may
have wide potential impact in other disciplines. Conceptual advances (e.g., applying the
concepts of social networks such as peer influence on disease management and treatment

adherence) and novel analytic approaches for studying properties of social networks are both
highlighted.
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These chapters convey that many frontiers remain for the study and application of social
networks. Similar to a Google search described above, our call for papers shows that
academic fields are at varying different stages of application of SNA. In our preparations for
this book, we thus sought a call for papers that in fact yielded great diversity. We decided
early on, that it is important for any book on SNA to share insights widely across fields.

Taken together, a picture emerges from the selected chapters that much work remains,
work that can be cross-fertilized through multidisciplinary team building. The potential for
this kind of team assembly grows as SN and SNA ideas spread and find fertile ground within
respective fields. This volume demonstrates that with such a base, the next generation of SN
concepts and methods can be propelled if the coalescing of interdisciplinary teams is fostered.

On a practical note, our efforts would not be in vain, if any reader “captures” an idea for
use in their thinking or practice, or even if a reader seeks to connect to the work and
commitment of these authors advancing SNA in each of their fields. Towards these ends — we
invite readers to contact us as this volume “spreads™ or influences yours or others attitudes,
skills, behaviors, relationships and actions. We post our email contact information below. We
look forward to hearing from readers about your use of this volume and working with you to
grow this network of science.

Sincerely,

Naiji Lu
Department of Biostatistics and Computational Biology
Naiji_Lu@urmc.rochester.edu

Ann Marie White
AnnMarieWhite@urmc.rochester.edu

Xin Tu
Xin_Tu@urmc.rochester.edu

Department of Biostatistics and Computational Biology
Rochester New York
University of Rochester

May 2013
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Chapter 1

THE EFFECT OF FILTERING ON ANIMAL NETWORKS

Nienke Alberts, Stuart Semple

and Julia Lehmann
Centre for Research in Evolutionary and Environmental Anthropology,
University of Roehampton, London

ABSTRACT

The past few years have seen a surge in the use of social network analysis to study
animal sociality. Because ties between animals are usually inferred from behavioural
interactions or spatial proximity, animal social networks may contain ties that are due to
chance rather than representing a true ‘bond’. To help focus on relationships that are
more likely to be biologically meaningful, networks are often filtered by removing all the
ties that are under a certain cut-off value. Researchers have proposed various methods to
determine the level of filtering; however, it is not clear how these different methods of
filtering may alter network metrics and consequently how they may affect the
conclusions that are drawn from subsequent analyses. We investigate the effect that five
commonly used filtering methods have on standard network metrics. To this end, social
networks were generated using association indices of a troop of wild olive baboons
(Papio anubis). These networks were filtered (i) until the network structure was
significantly different from random, (ii) by median association strength, (iil) by mean
association strength, (iv) until the giant component was close to breaking up, (v) by
including only preferential associations. Global network metrics, individual network
positions, and the extent of substructuring were determined and compared across the five
filtered networks and the unfiltered network. Our results show that while global network
metrics and individual network positions are affected by different filtering methods in a
relatively predictable way, the number of substructures that were found in networks was
strongly influenced by the way filtering was done. These results show that the appropriate
filtering method needs to be carefully considered, based on the nature of the biological
questions being asked.
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INTRODUCTION

The last decade has seen a marked increase in the use of social network analysis in the
study of animal societies (Krause et al., 2009; Brent et al., 2011) across a variety of taxa,
ranging from fish (e.g. Croft et al., 2004; Croft et al., 2006) to primates (e.g. Sueur and Petit
2008; Lehmann and Boesch 2009; Ramos-Fernandez et al., 2009; Henkel et al., 2010;
Lehmann and Ross 2011), from elephants (e.g. Wittemyer et al., 2005) to squirrels (e.g.
Manno 2008). This approach has proven valuable in addressing a wide range of questions
about animal societies. For example, social network analysis has been used to characterise the
social structures and identify substructures in animals groups in order to make fine-grained
comparisons between populations, species and across time, (Lusseau et al., 2006; Sundaresan
et al., 2007; Kasper and Voelkl 2009) and to assess the effect of environmental factors on
social structure (Wittemyer et al., 2005; Henzi et al., 2009; Alberts 2012). The social network
approach is frequently used to study animal populations with high levels of fission-fusion
dynamics, ie. where groups frequently split and reform, and where social structure is
therefore not readily apparent (Ramos-Fernandez et al., 2006; Sundaresan et al., 2007; Wolf
and Trillmich 2008; Ramos-Fernandez et al., 2009). In such populations, social network
analysis is often used to identify layers in the social structure that were hitherto unknown
(Lusseau et al., 2006; Ramos-Fernandez et al., 2006; Sundaresan et al., 2007; Wolf et al.,
2007). The social network approach has also been used for the identification of stable social
bonds between individuals, and investigation of how these bonds may benefit individuals
(Croft et al., 2004; Lehmann and Boesch 2009; Lea et al., 2010; Brent et al., 2011). An
important use of social network analysis is to investigate the role of individuals within
networks (Mitani 1986; Flack et al., 2006; Sueur and Petit 2008; Ramos-Fernandez et al.,
2009; Henkel et al., 2010), and in particular to explore how individual characteristics, such as
sex or age, may influence an individual’s position in their social network (Blumstein et al.,
2009; Ramos-Fernandez et al., 2009; Lehmann and Ross 2011).

An important issue that has arisen from studies of animal social networks in the last
decade is how relationships between individuals are defined, and what constitutes a ‘tie’. In
animal social networks, relationships between individuals are inferred, usually from
behavioural interactions or from spatial proximity. For some behavioural interactions, such as
grooming, inferring social relationships can be relatively straightforward, as individuals target
particular group members, and may make a considerable investment of time in such an
interaction. However, inferring relationships from other behaviours may result in social
networks that contain ties that do not represent a true ‘relationship’, but rather are due to
chance encounters. In particular, networks that are based on associations defined by “the
gambit of the group’ (Whitehead and Dufault 1999), i.e. when individuals are assumed to be
associated when they are found in the same group, are more likely to contain ties that are due
to chance events (Croft et al., 2008). In addition, unlike human groups, in many taxa societies
are relatively small and closed, so that there is a clearly demarcated group of individuals that
belong to the network, and changes to the composition of the network only occur through
demographic changes (i.e. births, deaths, emigrations, immigrations). Such societies may lead
to social networks in which all, or the majority of individuals are interconnected (Jacobs and
Petit 2011), making it impossible to differentiate between network metrics of different
networks if weighted networks are not used. In such weighted metrics, the strengths of the
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relationships are indicated by the weight of ties. The development of network metrics that
specifically take into account the weights of ties, such as those implemented in et (Opsahl
2009), has been an important advance in this field. Such weighted network metrics can, for
example, help to differentiate between an animal that is very social, and thus has many strong
ties, and an animal that has many weak relationships. Nevertheless, the majority of network
metrics currently do not take into account the weights of ties. Thus, even when metrics are
calculated in a weighted network, network metrics often only take into account whether ties
are absent or present, and not the weights of ties.

To help differentiate between chance ties and real relationships, in other words to help
focus on relationships that are more likely to be biologically meaningful, animal social
networks are often filtered until non-random core elements remain (Croft et al., 2008). In
these cases, a filter is applied to a network by removing all the ties that are under a certain
cut-off value, which can in principle be set at any level (Croft et al., 2008; Sueur et al., 2011).
While it is common to filter animal networks prior to analysis, there is no set method for
determining the appropriate cut-off value that should be used (Croft et al., 2008), and several
different approaches have been proposed. Methods include filtering the network until its
structure, which is measured by certain network metrics as test statistics, is significantly
different from a random network structure (Brent 2009; Alberts 2012), filtering by median or
mean association strength (Croft et al., 2004; Croft et al., 2008), or filtering until the giant
component of the network is close to breaking up into smaller components (Croft et al.,
2008). Perhaps the most frequently used method for the filtering of animal networks is to
include only preferential associations (Whitehead 1999; Lusseau 2003; Wittemyer et al.,
2005; Lusseau et al., 2006; Williams and Lusseau 2006; Sundaresan et al., 2007; Manno
2008; Lehmann and Boesch 2009; Ramos-Fernandez et al., 2009; Henkel et al., 2010). In
those studies, an association is considered ‘preferential’ when individuals associate
significantly more frequently than predicted if individuals associated with each other at
random. The choice of filtering methods is usually based on the type of data, i.e. binary or
weighted, used in the study as well as the research questions that are addressed. While
filtering of networks may be appropriate in studies that focus on the social relationships of
individuals, it may not be for studies that focus on the transmission of disease or parasites
(e.g. Comner et al., 2003; Cross et al., 2004; Godfrey et al., 2009) in which rare chance events
may be very important. Researchers of animal social networks frequently use global network
metrics to indicate the structure or qualities of the network to draw conclusions about their
study groups. Additionally, researchers often determine individual network positions, and
how these can be predicted by individual characteristics. Finally, social network analysis has
been popular in helping to determine the level of substructuring of the network. Currently it is
not known how each of these levels of investigation are affected by the various methods of
filtration, and consequently how the filtration method used may affect the conclusions that are
drawn from these metrics.

In this chapter we investigate the effect of different filtering methods on commonly used
network metrics, using the association network of a troop of wild olive baboons as a case
study. Global network metrics, individual network positions, and the extent of network
substructuring were compared across the unfiltered network and networks that were filtered:
(1) until the network structure was significantly different from random, (ii) by median
association strength, (iii) by mean association strength, (iv) until the giant component was
close to breaking up, and (v) by including only preferential associations.
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METHODS
Data Collection and Calculation of the Association Index

Data were collected on a troop of wild olive baboons (Papio anubis) in Gashaka-Gumti
National Park (GGNP), north-eastern Nigeria, over a one-year period from March 2009-
March 2010. GGNP is on the margin of the distribution of baboons, and is a somewhat
unusual study site for baboons, as it includes large areas of rainforest and is the wettest of all
the baboon study sites (Higham et al., 2009). The ‘Kwano’ study troop has been studied
continuously since 2000 (Sommer and Ross 2011). For the current study, baboons were fully
habituated to human observers and could be followed at a 2-6m distance. All baboons were
individually recognised by the observers. The Kwano troop had a mean group size of 34
individuals (range 31-37) during the study period; however, only adults and subadults that
were present for the entire study period were included in the networks (i.e. 16 individuals).
The Kwano troop forms a “closed’ social system, in which members are clearly identifiable,
and membership is highly stable. Nevertheless, fission-fusion dynamics have been observed
in this troop (Alberts 2012); therefore, individuals do not always associate simultaneously
with all troop members, but instead the troop temporarily splits into smaller subgroups.

Data were collected each day over an eight-hour period (i.e. 06:00 — 14:00 or between
10:00 — 18:00). Instantaneous sampling of the group, or scan sampling (Altmann 1974), was
conducted every hour. During scan sampling, the identity of each baboon in sight was
recorded at a preselected moment in time (i.e. every hour). Individuals that were seen together
in a scan were considered to be associated. For five minutes before each scan, researchers
walked around the area to locate baboons. The definition of an association used here is thus
broader than an association based on individuals being in visual contact. The method used
here may be a more appropriate estimation of associations at this site; the terrain at GGNP is
very uneven and large parts are forested, and therefore using a purely visual definition of
associations may underestimate the number of individuals in a subgroup. Each day around
eight scans were collected, making a total of 467 scans.

Individuals were considered to be in association if they were both observed in a scan.
Scan data were used to calculate the Twice Weight Index (TWI) in SOCPROG 2.4
(Whitehead 2009). The TWI was calculated for each dyad as follows:

Wl =—o—
X+Y,+Y,

Where X is the number of times @ and b were seen together, Y, the number of times a
was seen but not b, and Y, the number of time b was seen but not @ (Cairns and Schwager
1987).

Filtering of Networks

The TWIs were used to create six networks: one unfiltered, and five filtered. In the
unfiltered network all TWIs were used directly. The second network was filtered until
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network structure was significantly different from random. To this end, the observed network
was filtered by increments of 0.01 and dichotomised until the mean clustering coefficient and
the mean geodesic were significantly different from random. These two metrics were
calculated for the observed network and compared to the distribution of the test statistics for
50 Erdos-Rényi random graphs (Erdos and Rényi 1959). The mean clustering coefficient and
mean geodesic were chosen as test statistics because they provide a measure of the average
cohesion of a network, and are complementary; the mean geodesic is a global network
measure, in that it considers paths over the whole network, whereas the clustering coefficient
focuses more on local structures (Croft et al., 2008). Network structure was found to be
significantly different from a random structure at a filtration level of 0.170. This filter was
applied to the weighted network; thus associations weaker than 0.170 (i.e. TWI < 0.170) were
excluded. The third network was filtered by median association strength (0.220), and the
fourth by mean association strength (0.224) (i.e. TWIs less than these values were excluded).
The fifth network was filtered until its giant component was close to breaking up into smaller
components. The giant component, or largest connected component, is the component in the
network that contains the majority of nodes. The mean degree of a network is often close to 1
when the giant component is close to breaking up (Croft et al., 2008), and drops below 1
when the component fragments. Individuals dropping out of the network were not considered
separate components, and thus only when a second component of at least two nodes was
observed, was the network considered to have fragmented into multiple components. To
determine the appropriate level of filtering using this method, the unfiltered network was
visualised using NetDraw 2.089 (Borgatti 2002). The network was then filtered at increments
of 0.0001, and was visualised again at each stage. These steps were repeated until the giant
component was observed to break up (i.e. when more than one component was observed), and
then the previous increment was used as a cut-off value. The cut-off value for this method
was set at TWI < 0.340. Finally, the sixth network was filtered to include only preferential
associations. Preferentially associating dyads are pairs of baboons that were observed to be in
association significantly more frequently than expected by chance given the number of times
those individuals were observed. We tested for preferential associations using SOCPROG 2.4
(Whitehead 2009). In this procedure, observed TWIs are compared to the distribution of
TWIs of randomised data sets, in which data are randomised using a modification of the
methods of Manly (1995) and Bejder, Fletcher, and Briager (1998) (20,000 permutations),
keeping group size and the number of times each individual was observed constant
(Whitehead 1999). Dyads that were observed to associate significantly more than expected by
chance were included in the weighted network.

Calculation of Global Metrics, Individuals Network
Positions, and Substructures

All network metrics were calculated in UCINET (Borgatti et al., 2002). To test the effect
of filtering on global network structure, we compared eight network metrics that are
commonly used in the study of animal social networks: the binary and weighted density,
binary mean degree, the largest connected component, the mean geodesic, the diameter, the
mean clustering coefficient, and the weighted network centralisation (see Table 1 for
definitions) across the six networks. These eight metrics are frequently used by researchers of
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animal networks to characterise the structure of relationships in a group. Networks were
dichotomised to calculate the binary density and the binary mean degree. While all other
metrics were calculated in weighted networks, only the weighted density and weighted
network centralisation take the weights of the ties into account specifically. When a network
had more than one component, the diameter was calculated as the largest geodesic observed
in any component, whereas the clustering coefficient calculations only include individuals
with more than one tie.

Table 1. Definitions of global network metrics (adapted from Wasserman and Faust
1994; Croft et al., 2008; Opsahl and Panzarasa 2009).

Global network metrics

The density of a network is a measure of the number of ties in a network, and indicates the
level of cohesion. It indicates the number of ties in relation to the possible number of ties.
For an undirected network:

Binary density A= E
nn-1)/2

Where E is the number of ties in the network, and n the number of nodes. The value of A
ranges between 0 (empty) to | (completely connected).

The weighted density of a network is a measure of the average weight of ties across all
possible ties, and indicates how strongly connected a network is.

Weighted density A = E—“’
Y nan-1)/2

Where £ @ is the sum of the values of all ties, and n the number of nodes.
The mean degree is a measure of how well connected a network is. It indicates how many
ties nodes in the network have on average.

Binary mean k = l E ke
degree n L ‘
L

Where £; is the number of nodes i is connected to. Higher values indicate that on average
individuals have more ties.
Largest connected The largest connected component is the size of the largest group of nodes that are all
component  reachable from each other.
to each other in the network. It indicates the shortest path from a node to all other nodes in
the network.

n
1
Mean geodesic L= —z d(.j
" 1
i=

Where # is the number of nodes in the network, and 4 is the shortest distance between node
i and j. Larger values indicate a greater distance between individuals and thus that
relationships are less direct.

The network diameter is the largest of the shortest paths between individuals in a network.
This gives an indication of how *wide™ a network is, in other words, the maximum distance
between nodes. Higher values indicate individuals in the network may be more distant
from each other.

Diameter
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Global network metrics

The mean clustering coefficient is a measure of the cliquishness of a network. It indicates
the average proportion of ego’s neighbours that are also connected to each other.

T o1 i 2t;
ean clustering == ) ——
coefficient H = ki(ki — 1)

Where ¢; is the number of triangles of which node i is part, and & is the number of nodes i is
connected to. The clustering coefficient ranges between 0-1, with large values indicating a
large proportion of a node’s neighbours also have ties between themselves (clustered).

The weighted network centralisation is a measure of how evenly ties are distributed over
individuals in the network. It indicates the differences between the largest individual
centrality score and the scores of all the other individuals in the network, and is normalised
by maximum possible difference.

Weighted "
network e YisalCp (n %) — Cp(ny)]
centralisation D™ max riqlCp(m+) — Cp(ny)]

Where Cp(n;) is the centrality score for node i, and Cp(n *) is the largest observed value.
Low values indicate ties are equally distributed over individuals, high values indicate that a
few individuals have most of the ties.

Next, we calculated four standard individual centrality measures frequently used in
studies of animal social networks: degree centrality, betweeness centrality, closeness
centrality and eigenvector centrality (see Table 2 for definitions). These centrality measures
are frequently used by researchers of animal networks to identify animals that play important
roles in their networks, and to draw conclusions about the characteristics of animals (e.g. age
or sex) that may influence the role of individuals in their networks. Because centrality
measures were calculated in weighted networks, the degree centrality and the eigenvector
centrality use the sums of the values of an individual’s ties. While betweeness and closeness
centrality are distance-based measures, these do not take into account the weights of the ties,
despite being calculated on a weighted network. To determine if individuals had similar
network positions in networks that were filtered by different methods, and thus to assess the
effect of filtering on the conclusions drawn about the roles of individuals in their networks,
correlations were run between individual centrality scores of the same centrality measure
across the networks. As data were not normally distributed, non-parametric correlations were
used. Two sets of correlations were carried out; first, correlations were run including
centrality scores of all individuals. However, researchers often draw conclusions on
individual positions only within the connected component of the network, and correlations
may be heavily affected by the inclusion of the centrality scores of the isolates. We therefore
ran a second set of correlations including only those individuals that had a centrality score
above zero. Finally, the presence and number of two types of commonly used substructures,
cliques and k-plexes, were investigated in the weighted networks. The presence of
substructures is frequently used by researchers of animal networks to identify layers in the
social organisation of an animal group, and to identify individual characteristics that may
underlie the formation of such layers (e.g. age-mates or kin may form clusters in a network).
First, we determined the number of cliques, or maximally complete subgraphs, in the
networks. We set the minimum size of cliques to three, as this is the smallest possible group
above a dyad. Second, we searched for the number of k-plexes in the networks.



