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Preface

This is a commented collection of some easily formulated open problems in the
geometry and analysis on Banach spaces, focusing on basic linear geometry, con-
vexity, approximation, optimization, differentiability, renormings, weak compact
generating, Schauder bases and biorthogonal systems, fixed points, topology, and
nonlinear geometry.

The collection consists of some commented questions that, to our best knowl-
edge, are open. In some cases, we associate the problem with the person we first
learned it from. We apologize if it may turn out that this person was not the original
source. If we took the problem from a recent book, instead of referring to the author
of the problem, we sometimes refer to that bibliographic source. We apologize that
some problems might have already been solved. Some of the problems are long-
standing open problems, some are recent, some are more important, and some are
only “local” problems. Some would require new ideas, and some may go only with
a subtle combination of known facts. All of them document the need for further
research in this area. The list has of course been influenced by our limited knowledge
of such a large field. The text bears no intentions to be systematic or exhaustive. In
fact, big parts of important areas are missing: for example, many results in local
theory of spaces (i.e., structures of finite-dimensional subspaces), more results in
Haar measures and their relatives, etc. With each problem, we tried to provide some
information where more on the particular problem can be found. We hope that the
list may help in showing borders of the present knowledge in some parts of Banach
space theory and thus be of some assistance in preparing MSc and PhD theses in this
area. We are sure that the readers will have no difficulty to consider as well problems
related to the ones presented here. We believe that this survey can especially help
researchers that are outside the centers of Banach space theory. We have tried to
choose such open problems that may attract readers’ attention to areas surrounding
them.

Summing up, the main purpose of this work is to help in convincing young
researchers in functional analysis that the theory of Banach spaces is a fertile field
of research, full of interesting open problems. Inside the Banach space area, the
text should help a young researcher to choose his/her favorite part to work in. This
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viii Preface

way we hope that problems around the ones listed below may help in motivating
research in these areas. For plenty of open problems, we refer also to, e.g.,
[AIKal06, BenLin00, BorVan10, CasGon97, DeGoZi93, Fa97, FHHMZ1 1, FMZ06,
HaJol4, HMZ12, HMVZ08, HajZiz06, Kal08, LinTza77, MOTV09, Piet09, Woj91],
and [Ziz03].

To assist the reader, we provided two indices and a comprehensive table referring
to the listed problems by subject.

We follow the basic notation in the Banach space theory and assume that the
reader is familiar with the very basic concepts and results in Banach spaces (see,
e.g., [AlKal06, Di84, FHHMZI1 1, LinTza77, HMVZ08, Megg98]). For a very basic
introduction to Banach space theory—"undergraduate style”—we refer to, e.g.,
[MZZ15, Chap. 11]. By a Banach space we usually mean an infinite-dimensional
Banach space over the real field—otherwise we shall spell out that we deal with
the finite-dimensional case. If no confusion may arise, the word space will refer
to a Banach space. Unless stated otherwise, by a subspace we shall mean a closed
subspace. The term operator refers to a bounded linear operator, and an operator
with real values will be called a functional, understanding, except if it is explicitly
mentioned, that it is continuous. A subspace Y of a Banach space X is said to be
complemented if it is the range of a bounded linear projection on X. The unit
sphere of the Banach space X, {x € X : [x|| = 1}, is denoted by Sy, and the unit
ball {x € X : ||x|| < 1} is denoted by Bx. The words “smooth™ and “differentiable”
have the same meaning here. Unless stated otherwise, they are meant in the Fréchet
(i.e., total differential) sense. If they are meant in the Gateaux (i.e., directional)
sense, we clearly mention it (for those concepts, see their definitions in, e.g.,
[FHHMZI11, p. 331]). We say that a norm is smooth when it is smooth at all nonzero
points. Sometimes, we say that “a Banach space X admits a norm || - ||,” meaning
that it admits an equivalent norm || - ||. By ZFC we mean, as usual, the Zermelo-
Fraenkel-Choice standard axioms of set theory. Unless stated otherwise, we use this
set of axioms. We say that some statement is consistent if its negation cannot be
proved by the sole ZFC set of axioms. Cardinal numbers are usually denoted by
R, while ordinal numbers are denoted by «, B, etc. With the symbol Ry we denote
the cardinal number of the set N of natural numbers, and 8, is the first uncountable
cardinal. Similarly, w, (sometimes denoted w) is the ordinal number of the set N
under its natural ordering, and w, is the first uncountable ordinal. The continuum
hypothesis then reads 2% = R,. The cardinality 2% of the set of real numbers (the
continuum) will be denoted by c. If no confusion may arise, we sometimes denote
by w; also its cardinal number ¥;.

We prepared this little book as a working companion for [FHHMZ11] and
[HMVZ08]. We often use this book to upgrade and update information provided
in these two references.

Overall, we would be glad if this text helped in providing a picture of the present
state of the art in this part of Banach space theory. We hope that the text may serve
also as a kind of reference book for this area of research.
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Chapter 1
Basic Linear Structure

1.1 Schauder Bases

A sequence {e;}2, in a Banach space X is called a Schauder basis for X if for each
x € X there is a unique sequence of scalars {o;}%2, such that x = Y =, ave;. If the
convergence of this series is unconditional for all x € X (i.e., any rearrangement of
it converges), we say that the Schauder basis is unconditional. This is equivalent to
say that under any permutation 7 : N — N, the sequence {e, ()}, is again a basis
of X.

Not every separable Banach space admits a Schauder basis,as it was shown first
by P. Enflo (see, e.g., [LinTza77, p. 29] or [FHHMZ11, p. 711]).

== YOO} —
)

We refer to [DLAT10, Pe06] and [Cass01] for more on the questions formulated
in Problem 1.

Problem 1. Let X be a separable infinite-dimensional Banach space that is
not isomorphic to a Hilbert space.

(i) (A. Pelczyiiski) Does there exist an infinite-dimensional subspace of X
with Schauder basis that is not complemented in X?
(ii) (A. Pelczyiiski) Do there exist two infinite-dimensional subspaces of X
with Schauder basis that are not isomorphic?
(iii) (A. Pelczyiiski) Does there exist a subspace of X with Schauder basis
that is not isomorphic to £,?

(continued)
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Problem 1 (continued)
(iv) (G. Godefroy) Does there exist an infinite sequence {X,}°2, of mutually

n=|
nonisomorphic infinite-dimensional subspaces of X?
(v) Does there exist a subspace of X that has no unconditional Schauder
basis?

Concerning Problem 1 we would like to point out:

. J. Lindenstrauss and L. Tzafriri showed in [LinTza71] that if all subspaces of a

Banach space X are complemented in X, then X is isomorphic to a Hilbert space
(cf., e.g., [FHHMZI11, p. 309] or [AlKal06, p. 301]). On the other hand, W. B.
Johnson and A. Szankowski in [JoSz14] showed that there is a separable infinite-
dimensional Banach space X that is not isomorphic to a Hilbert space and yet,
every subspace of X is isomorphic to a complemented subspace of X.

. R. Komorowski and N. Tomczak-Jaegermann [KoTo95,98] and W. T. Gowers

[Gow96] showed that a separable Banach space X is isomorphic to a Hilbert
space if all infinite-dimensional subspaces of X are isomorphic to X (cf., e.g.,
[FHHMZ11, p. 267]).

. W. B. Johnson showed that there is a separable reflexive infinite-dimensional

Banach space with unconditional Schauder basis (the so-called 2-convexified
Tsirelson space T?) that does not contain isomorphic copies of 4,1 <p<og,
and such that all of its subspaces do have Schauder basis (cf., e.g., [CassO1,
p. 276]).

. A. Pefczyfiski and I. Singer showed in [PeSi64] that if an infinite-dimensional

Banach space X has a Schauder basis, then there is a continuum of normalized
mutually non-equivalent conditional Schauder bases in X. A Schauder basis
{e;}2, is normalized if [le;| = 1 for all i and a basis {¢;}{2, is equivalent

to a basis {f;}2, if for scalars {A;}72,, 3" Aje; converges if and only if ) A;f;
converges.

. R. Anisca verified in [An10] in the positive G. Godefroy conjecture in Problem 1

(iv) for the class of the so-called weak Hilbert spaces that are not isomorphic to
Hilbert spaces. A Banach space X is a weak Hilbert space if there are positive
constants K and § such that every n-dimensional subspace of X has a subspace
of dimension at least én that is K-linearly isomorphic to a Hilbert space and K-
complemented in X. The spaces X and Y are K-linearly isomorphic if there is a
linear isomorphism ¢ from X onto Y such that ||¢| - [¢~'|| < K. The space Y is
K-complemented in X if there is a projection P from X onto Y such that ||P|| <
K. All subspaces, quotients, and duals of weak Hilbert spaces are themselves
weak Hilbert spaces, and W. B. Johnson showed that all weak Hilbert spaces
are superreflexive (for references see, e.g., [Pis88]). Superreflexive spaces are
spaces that admit an equivalent uniformly convex norm. The norm || - || of a
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Banach space is said to be uniformly convex if the modulus of convexity
d(e) := inf{l — ||[(x +y)/2|| : x,y € Bx, ||[x—y| = &} is positive for every
e € (0,2].

. A sequence in a normed space is said to be basic if it is a Schauder basis of

its closed linear span. Every infinite-dimensional Banach space contains a basic
sequence (a classic result of S. Mazur). W. T. Gowers and B. Maurey found, in
1991, a reflexive Banach space X that has no unconditional basic sequence (i.e.,
X has no infinite-dimensional subspace with unconditional basis). The result
appeared in [GowMau93], and was inspired, as B. Maurey indicates in [Mau03],
by the famous B. S. Tsirelson example of a reflexive Banach space that does
not contain any £, for 1 < p < +oc [Tsi74] and by its modification by Th.
Schlumprecht [Schi91]. It was crucial that W. B. Johnson showed that this space
of W. T. Gowers and B. Maurey is actually hereditarily indecomposable (HI, in
short), i.e., a Banach space X such that no closed subspace Z of X can be written
as a topological direct sum of two infinite-dimensional closed subspaces of Z.
This means that for every pair of two closed infinite-dimensional subspaces Y
and Z of such X, the distance of Sy to Sz is zero. This in turn means that in
such X, there is no bounded projection P from a subspace Z into itself such that
the range of P and the kernel of P were infinite-dimensional (see also Sect, 1.2
below). Note that all HI spaces clearly have the property that they do not contain
any unconditional basic sequence—since the span of such a sequence would
be clearly decomposable. It follows that if X is a hereditarily indecomposable
space, then X is not isomorphic to any proper subspace of X; in particular, it
is not isomorphic to any of its hyperplanes. This was an open problem from S.
Banach himself (cf., e.g., [Mau03, p. 1265]). The first example of a Banach space
not isomorphic to its hyperplanes was found by W.T. Gowers in [Gow94]. This

~ space has an unconditional basis. See also Problem 2 and Remarks to it, as well

as Sect. 1.2 below.

These results solved problems that have stayed open for about 70 years and
created a true revolution in the recent development of Banach space theory. For
this and more information we recommend to consult, e.g., [Mau03].

Let us note in passing that there is a nonseparable C(K)-space such that every
one-to-one operator from C(K) into itself is necessarily onto [AviKo13].

W. T. Gowers proved in [Gow96] the following dichotomy: Let X be an
arbitrary infinite-dimensional Banach space. Either X contains an unconditional
basic sequence or X contains a HI subspace. He also produced a Banach space
Y not containing any reflexive infinite-dimensional subspace and containing no
copies of ¢g or £ [Gow94b]. By James’ theorem (cf., e.g., [FHHMZI11, p. 204]),
together with the dichotomy just mentioned, we get a HI subspace of Y that has
no reflexive subspace.

In this direction see also [Fer97].
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A bump function (or just a bump) on a Banach space is a real-valued function
with bounded nonempty support. R. Deville showed that if a Banach space X admits
a C*®-smooth bump function, then X contains a copy of co or some £,, p > 1,
so it cannot be hereditarily indecomposable (see Remark 6 to Problem 1; see also
[DeGoZi93, p. 209]).

We do not know the answer to the following problem:

Problem 2. Assume that X is a separable infinite-dimensional Banach space
that admits a C°°-smooth bump function. Is X necessarily isomorphic to its
hyperplanes?

1. The very original space T of Tsirelson (see Remark 6 to Problem 1 above) was
constructed as a reflexive space with unconditional basis, no infinite-dimensional
subspace of which admits a uniformly convex norm. This short self-contained
crystal-clear text has drastically influenced the whole Banach space theory. This
was achieved by ensuring that for every infinite-dimensional subspace E of T,
co is crudely finitely representable in E (meaning that there is K > 0 such that
every finite-dimensional subspace of ¢ is K-isomorphic to a subspace of E).
So, ¢y is crudely finitely representable in each infinite-dimensional subspace of
T and yet, ¢( is not isomorphic to any subspace of T (T is reflexive). Now, if
an infinite-dimensional subspace E of T had an equivalent uniformly convex
norm, by a simple limit technique explained, e.g., in [FHHMZ]11, p. 435], this
would give that ¢y admits an equivalent uniformly convex norm. Since ¢y does
not admit any uniformly convex norm as it is not reflexive [FHHMZ11, p. 434],
this all implies that no infinite-dimensional subspace of T can have an equivalent
uniformly convex norm. Thus, in particular, no €, for p > 1 can be isomorphic
to a subspace of T. As a reflexive space, T cannot contain an isomorphic copy
of £;. Therefore T cannot contain a copy of any £, or cy. Tsirelson’s original,
truly ingenious, short, direct geometric construction of the unit ball of T [Tsi74]
is described, e.g., in [FHHMZ11, p. 459]. The key point is the construction of
the unit ball of T as a weakly compact subset of ¢y, in such a way that, by
Petczyiiski method, one can model finitely ¢y on the “tails” of sequences. This
kind of modelling is the main novelty in Tsirelson construction. It is proved in
[CIT84] that T isomorphically embeds into each infinite-dimensional subspace of
T. An analytic approach to the Tsirelson (dual) space is explained in [LinTza77,
p. 95]. This space thus solved the original Banach problem on containment of £,
or ¢o in every Banach space which used to be a famous longstanding problem
for about 40 years. Tsirelson’s example had an enormous impact on the Banach
space theory and has been substantially influencing its further development since
the year 1974, when it appeared. The reader is encouraged to consult [CaSh89].

As a reflexive space, Tsirelson’s space admits a Fréchet differentiable norm
(cf., e.g., [FHHMZI11, p. 387]). However, the (continuous) differential of this
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norm cannot be locally uniformly continuous on (the sphere of) any infinite-
dimensional subspace of the Tsirelson space (cf., e.g., [DeGoZi93, p. 203]).

A space introduced by T. Figiel and W. B. Johnson in [FiJo74] can be consid-
ered as the first descendent of Tsirelson’s space. It is a uniformly convex space
that contains no copies of {, or cy. Then, after, say, 15 years, T. Schlumprecht
constructed a more flexible variant of Tsirelson’s space—presented in the
Jerusalem conference in 1991 and now called the space S, see [Schl91]—that
almost immediately created a true revolution in Banach space theory, leading to
the solution of the hyperplane problem, the unconditional subbasis problem, the
homogeneous problem and, above all, the creation of a HI space (as we discussed
in Comments to Problem 1; see also Sect. 1.2 below). Moreover it led to results
on distortable norms.

. The first example of a Fréchet space (i.e., a locally convex complete metric

linear space) with the property of not being isomorphic to a subspace of
codimension 1 was constructed by C. Bessaga, A. Pelczynski, and S. Rolewicz in
1961 in [BePeRo61]. E. Dubinsky then proved that, in particular, every separable
Banach space has a dense subspace that is not isomorphic to its hyperplanes
[Dub71]. We refer to [PeBe79, p. 227] for more on this subject.

The fact that it took half of a century quite an effort of many world centers to
do such construction for Banach spaces documents how subtle and creative the
concept of Banach space is.

DOTm— =

The basis constant bc(Y) of a Banach space Y is defined as the least upper bound

of the constants L such that there is a Schauder basis {e,}72, for ¥ satisfying

n n—+m
“ Z tjej” < LN Z rjej“ for all scalars . ...#,4+p, and n,m € N.
=1 =1

If Y does not have any basis we put be(Y) = co.

If X and Y are two isomorphic Banach spaces, then the Banach—Mazur distance

between X and Y is defined to be the infimum of |T|.|7T~"| as T ranges over all

isomorphisms from X onto Y. The Banach—-Mazur distance between X and Y is
denoted by d(X. Y).

Parts of Problem 1 are closely connected to the following more general conjec-

ture of A. Petczynski [Pe06].

Problem 3 (A. Pelczyniski). Does there exist a constant C > 1 and a function
@ : [1.+00) = R with Ll_i_)ngéq:(L) = oo such that if dimE < oo and

d(E,€9™F) > L then there is a subspace F C E with bc(F) < C and
d(F . €5™F) > o(L)?
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Roughly speaking the conjecture says: A finite-dimensional space which is far
from a Hilbert space has a subspace which is far from a Hilbert space and has a
nice basis.

~\
WOX

We do not know if the following problem from [LinTza77, p. 86] is still open:

Problem 4. Let 1 < p < oo and let X be an infinite-dimensional Banach
space that is isomorphic both to a subspace and to a quotient space of {,. Is X
isomorphic to £,?

D) Gl

Recall that the density of a Banach space X is the minimal cardinality of a norm
dense set in X.

Problem 5. Can the original Tsirelson’s construction mentioned in Remark 6
to Problem 1, above, be adjusted to produce a reflexive Banach space X of
density ¢ with unconditional basis such that g is crudely finitely representable
in every infinite-dimensional subspace of X?

We defined unconditional Schauder basis at p. 1. In general, a family {e, },er
of vectors in a Banach space X is called an unconditional long Schauder basis of
X if for every x € X there is a unique family of real numbers {a, },er such that
x = ) aye, in the sense that for every & > 0 there is a finite set F C T" such that
[l =", er ayeyll < € for every finite F' O F.

O T—————————

The following problem is mentioned, e.g., in [LinTza73, p. 19].

Problem 6. Assume that X is a separable Banach with unconditional

Schauder basis and Y is a complemented subspace of X. Does ¥ have an

unconditional Schauder basis? Or, at least, does such ¥ have a complemcnted
- subspace with an unconditional Schauder basis?
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We refer to [CassO1, p. 279].

MM

W

A Banach space X is called an £,-space, for 1 < p < oo, if there is A < oo
such that for every finite-dimensional subspace E of X, there is a further finite-
dimensional subspace F of X with F D E and with d(F, £5™F) < A.

Problem 7. Assume that 1 < p < oo, p # 2, and that X is a separable
L,-space. Does X have an unconditional Schauder basis?

Note that X is then a complemented subspace of L, [JoLinO1b, p. 57]. Thus the
problem is connected with Problem 6 (use the Marcinkiewicz—Paley theorem on
unconditional bases in L, spaces for p > 1, see, e.g., [AlKal06, p. 130]).

This problem is in [HOS11], where more on it can be found; for example, that
any separable L,-space has a Schauder basis for 1 < p < oc.

— 19" )"

Problem 8. Let 1 < p < oo, p # 2. Assume that L, () has density 8; and
w is finite. Does L,(jt) have an unconditional Schauder basis? :

We took this problem from [JoSch14]. It is known that the answer is negative if
the density of the space is at least ¥, [EnRo73].

DO O —— e

Connected with Problem 8, we may ask the following:

Problem 9. Study the long Schauder bases in L, (u)-spaces for j finite in the
sense described, e.g., in [HMVZO08, p. 132].



