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Minimizing Drift in Electrical Conductivity Measurements in High Temperature
Environments using the EM-38

D. A. Robinson,* 1. Lebron, S. M. Lesch, and P. Shouse

ABSTRACT

The EM-38 is a noninvasive instrument, commonly used for moni-
toring salinity, mapping bulk soil properties, and evaluating soil nutri-
ent status. Users in the Southwest USA have observed as much as
20% *“drift” in the measurement of bulk soil electrical conductivity
(EC,) with this instrument. This drift has usually been ignored or
compensated for by statistical procedures. We performed laboratory
and field experiments to determine if the drift is due to calibration
instability of the instrument or to heating of the instrument by the
sun. In laboratory experiments, after a warm-up period, the instrument
provided constant readings in the range 25 to 40°C; above 40°C the
response of the instrument was unpredictable. In field experiments,
where we placed the EM-38 in a fixed location we observed an unex-
pected response at air temperatures below 40°C. Temperature sensors
in different locations on the instrument demonstrated that tempera-
ture differences between the instrument’s transmitting and receiving
coils and the control panel (CP) were as great as 20°C. As the instru-
ment is temperature compensated from this CP, erroneous compensa-
tion occurred when the instrument was placed in direct sunlight. In
this study, we demonstrate that differential heating of the EM-38is one
cause of drift and erroneous bulk electrical conductivity measurement;
shading the instrument substantially reduced this problem, effectively
extending the reliable working temperature range by minimizing drift.

T HE CONCEPT OF USING induced electromagnetic fields
to measure ground conductivity has been applied
in the geosciences for more than 50 yr (Belluigi, 1948;
Wait 1954, 1955, 1982). Induction methods were used ex-
tensively for ore prospecting as metallic ore bodies can
have substantial electrical conductivity (Keller and
Frischknecht, 1966). They were also used for well log-
ging in the petroleum exploration industry (Keller and
Frischknecht, 1966). Noninvasive instruments were first
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considered for use in agriculture by De Jong et al.
(1979). Since then the technique has been used to map
avariety of physical quantities with which EC, correlates
(e.g., salinity, moisture, and clay content). Water con-
tent has been estimated from measurements of EC, by
Kachanoski et al. (1988) and Sheets and Hendrickx (1995),
salinity by a number of authors (Corwin and Rhoades,
1982; Wollenhaupt et al., 1986; Hendrickx et al., 1992;
Rhoades, 1993; Lesch et al., 1995a, 1995b; Rhoades et
al., 1999), and inferring differences in mineralogy by
Triantafilis et al. (2000). Increasingly, applications are
being identified in precision agriculture for determining
nutrient status and potential yield (Corwin and Lesch,
2003; Corwin et al., 2003).

The EM-38 has been adapted for general mapping in
agriculture, an example is the Lower Colorado Region
Salinity Assessment Program. This is a network of peo-
ple and organizations that are committed to improving
the assessment of soil salinity in agricultural fields in
the Southern Colorado region to guide management
decisions (http://www.ussl.ars.usda.gov/lcrsan/LCRhome.
htm; verified 7 Oct. 2003). Soil mapping survey units
consisting of converted spray rigs, mounted with dual
dipole EM-38 units and GPS, have been used to map
agricultural fields (Rhoades, 1993; Lesch et al., 1995a,
1995b; Triantafillis et al., 2002). Data has been analyzed
using ESAP computer software to produce maps and
statistical sampling plans (http://www.ussl.ars.usda.gov/
MODELS/esap-95.htm; verified 7 Oct. 2003). As this
network of users has developed, large amounts of data
have been collected and some anomalous results have
been observed.

The term drift has been used to describe disparate
values in EM-38 data, collected at different times from
the same location, that cannot be accounted for by
changes in water content or soil temperature. The causes

Abbreviations: CP, control panel; EC,, bulk soil electrical conductiv-
ity; H;, induced magnetic field; H,, primary magnetic field; Rx, receiv-
ing coil; Tx, transmitting coil.
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Fig. 1. (A) Data from field mapping where the same row was run in the morning and again later in the day showing responses that follow each
other with an offset. (B) A similar data set from another field site run in the morning and again later in the day, where the response jumps

at point 730.

of drift are considered to be two-fold, the first arising
from the coil spacing and the second due to thermal
distortion of the coils. In the case of the EM-38 the
spacing between the coils is fixed, the second forms the
subject of this piece of work. In an experiment with a
static EM-38 Sudduth et al. (2001) noted that as temper-
ature increased, the in-phase I/P reading of the EM-38,
which should be zero decreased and as a result the
measured EC, was observed to increase. It is common
practice to take measurements along a plough row in a
field and then later in the day return to that row to
repeat the measurements (Sudduth et al., 2001). This
operation is known as running a drift row. Figure 1A
shows the values of EC, along a row where measure-
ments were collected early in the morning and later in
the day. The readings correspond to the instrument in
the vertical orientation. In Fig. 1A, the readings of the
later run are offset by an increase of about 20%. Given
the depth of EC, measurement, this could not be ac-
counted for by changes in soil temperature.

Figure 1B shows another anomaly between EC, data
collected in the morning and in the evening. The data
from the evening initially coincides with the data from
the morning, then unexpectedly a jump occurs wherein
the data follows the same pattern but is shifted upwards
by 10%. The cause of these anomalies is unknown and
users have suggested that the calibration of the instru-
ment is unstable. If this is the case, maps of soil proper-
ties, such as nutrient status, can potentially contain sub-
stantial errors.

Our impression from working with the instrument
was that drift effects appeared more pronounced on
hot sunny days. The Geonics manual suggests that the
working range of the instrument is 5 to 50°C. However,

in a personal communication with Geonics, we were
informed that the instrument is only temperature com-
pensated up to 40°C. Each probe then has its own sys-
tematic temperature response characteristic above this
temperature. With this information in mind, we de-
signed a set of experiments to determine the effect of
environmental temperature on the repeatability of
EM-38 measurements. Our objective was to determine
the source of drift by: (i) evaluating the stability of
EM-38 calibration and (ii) determining the impact of
heating on the EM-38 response. These experiments
were performed in the laboratory and under field condi-
tions to find a solution for instrument drift and to reduce
measurement error.

MATERIALS AND METHODS
Instrument Background

A schematic diagram of the EM-38 is presented in Fig. 2
showing the location of induced magnetic fields during opera-
tion. A transmitting coil (Tx) in one end of the instrument
creates a primary magnetic field (H,). This field creates current
loops in the ground below and the current loops induce their
own magnetic field (H;). The induced field is superimposed
on the primary field and both H, and H; are measured in a
receiving coil (Rx) at the other end of the instrument (McNeill,
1980). The measured response is a function of ground conduc-
tivity, which is linear in the range of soil conductivity of 0 to
10 dS m~'. Measurements of ground conductivity can be made
with the instrument in either the vertical or horizontal orienta-
tion. In the horizontal orientation the instrument measures to
a depth of about 0.75 m with the greatest sensitivity just under
the instrument. With the instrument in the vertical orientation
it measures to a depth of about 1.5 m with the greatest sensitiv-
ity at about 0.4 m.
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Control panel  Carrying handels

Rx, Reciever

H; Reinforced
magnetic field
Hy+H;

**H;, Induced secondary
magnetic field
Current loops in the
ground created by H,
Fig. 2. Schematic diagram of the EM-38, which is 1 m in length. Tx
is the transmitting coil and Rx is the receiving coil. Locations CP
and Rx are where the temperature sensors were placed.

H,, Primary T

magnetic field

A standard single dipole EM-38 was used throughout the
experiments. A second single dipole EM-38 was used to repli-
cate both the indoor and outdoor experiments. The instru-
ments were calibrated using the described standard method.
The probe was placed 1.5 m above the ground on a wooden
support; the vertical and horizontal readings were adjusted
until the vertical read twice the value of the horizontal. The
instruments were calibrated after a warm-up period of 2 h.
The calibration was checked for consistency after each experi-
mental run.

During the experiments we measured the temperature of
the air, soil, and two parts of the instrument, the CP under
which the instrument circuit is located, and at the receiving
coil Rx (Fig. 2). Thermocouples, connected to a Campbell
CR10x data logger (Campbell Scientific Inc., Logan, UT) were
used to record the temperature every minute.

Controlled Experimental Setup Indoors

Indoor experiments were conducted with the EM-38 so that
the temperature of the surroundings could be controlled. The
first objective was to verify the reliability of EM-38 calibration.
The EM-38 was calibrated and placed in a large room where
temperature was maintained at 22 = 1°C. The instrument was
placed on a plastic drum, 1 m above the ground and kept in
the vertical orientation for all experiments. By doing so the
instrument response to the ground, primarily the rebar (iron
rods) in the concrete could be evaluated. EM-38 measure-
ments were taken every minute and recorded on a Polycorder
located several meters from the instrument.

The second objective was to determine the reliability of the
instruments temperature compensation. This was performed
by warming the instrument with an electric blanket. Prelimi-
nary tests were conducted to ensure that the blanket did not
interfere with the response of the EM-38. The response was
measured without the blanket, with the blanket wrapped
around the central 50 cm of the instrument and with the
instrument completely covered. No effect was observed, the
same conditions were repeated, but this time with the blanket
switched on. Finally, the blanket was switched on and off
repeatedly to see if this had any impact on the EM-38 response,
again no effect was observed.

We conducted two experiments using the blanket to heat
the instrument. The first determined the effect of differential
instrument heating and the second determined the effect of
uniform instrument heating. In the first of these experiments
localized heat was applied to the EM-38 circuit (CP, Fig. 2)
in the central 50 cm of the instrument while maintaining the
rest of the instrument and the environment at constant temper-
ature and constant electrical conductivity.

The second experiment was used to determine the response

of the instrument to uniform warming. This time the entire
instrument was wrapped in the blanket and heated. In both
experiments the temperature of the instrument was raised to
a maximum of 55°C. This is a temperature commonly experi-
enced during summer in the Southern USA.

Outdoor Experiments

Outdoor experiments at the U.S. Salinity Laboratory were
conducted on bare soil (Arlington, sandy loam) that was irri-
gated once per day at 0600 h. Measurements were made on
a series of warm sunny days in June and July of 2002 when
the weather was similar to that commonly experienced during
typical fieldwork. The EM-38 response was recorded continu-
ously over a 10-h period beginning at 0900 h using a Polycorder
located several meters from the instrument under shade. High
temperatures did not affect the performance of the Polycorder.
The experiments were run with the EM-38 in the vertical
orientation. This allowed measurements of EC, to be obtained
from a depth where soil is least subject to changes in tempera-
ture or water content. The EM-38 was positioned on a 2.5-cm
thick piece of wood placed on the ground to prevent heating
from the soil and to ensure the same daily location. Soil tem-
perature (10-cm depth) was also monitored at the beginning
of each experiment. This was performed around mid-day and
in the late afternoon, using a handheld temperature probe.
The calibration of the instrument was checked periodically
and found to be consistent. A final experiment on an asphalt
surface was performed by placing the EM-38 in the vertical
position on a 2.5-cm thick wood on top of asphalt. During the
first 160 min the instrument was shaded, after that time the
shade was removed and EC, and temperatures at CP and Rx
were recorded for 600 min.

RESULTS AND DISCUSSION
Controlled Experiments Indoors

Experiments were conducted indoors in a controlled
environment to best define EM-38 response to con-
stant temperatures, differential heating, and elevated
temperatures. In the first experiment the instrument
was switched on and run continuously at a constant air
temperature of 22°C. The readings of the EM-38 were
constant during a 12-h uninterrupted time period. This
simple experiment was necessary to test the stability of
the calibration of the EM-38. Since no jumps or sudden
changes in EC, were recorded and the readings re-
mained constant this demonstrated that the cause of the
drift was not unstable calibration.

In the next experiment the central section of the EM-38
containing the instrument circuit board was warmed
using an electric blanket, while the transmitting and
receiving coils were maintained at the ambient room
temperature. The temperature of the receiving coil, floor,
and air were monitored and remained constant at 22°C.
The response, which was replicated by another single
dipole EM-38 (data not shown), showed that as the
instrument panel and circuitry warmed up, the instru-
ment electrical conductivity response decreased (Fig. 3).
This suggested that the instrument temperature com-
pensation was located at, and controlled by, the instru-
ment circuit board under the black CP (Fig. 2). This
also suggests that the temperature compensation is pro-
vided for the coils and not the circuit. If the circuit were
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Fig. 3. (A) Temperature response for control panel (CP) and receiv-
ing coils (Rx) of the EM-38 with the central 50 cm of the instrument
wrapped in an electric blanket and warmed. (B) The soil bulk
electrical conductivity (EC,) response, which reduces as the instru-
ment panel is warmed.
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temperature compensated, a constant EC, value would
be expected. The temperature compensation design as-
sumes that the instrument is at a uniform temperature,
and that the coils (Rx in Fig. 2) are at the same tempera-
ture as the circuit. These findings were corroborated by
the third experiment.

The results from the third experiment with the instru-
ment completely wrapped in the blanket and heated
uniformly are presented in Fig. 4. This experiment dem-
onstrates more clearly the temperature compensation
of the instrument. For the first 120 min, while the tem-

SOIL SCI. SOC. AM. J., VOL. 68, MARCH-APRIL 2004

perature is below 40°C, the instrument effectively com-
pensates for temperature changes and provides a constant
reading. Above 40°C, when the increase in temperature
is more abrupt, the EC, value measured by the EM-38
increased. The EC, reading rose from 2.8 dS m! to a
maximum value of 3.2 dS m ™' occurring at 46°C (Fig. 4B).
As the temperature continued to rise the EC, reading
began to decline (Fig. 4C). When the instrument was
allowed to cool down the EC, response dropped below
the initial value. By the time we checked the probe the
following day the reading was back to normal and the
instrument was in calibration. It is interesting to observe
that the temperature of the circuit, under the CP, was
slightly higher than the temperature of the receiver
(dashed line in Fig. 4). This higher temperature may be
due to differing thermal properties of the materials used
to construct the instrument.

Outdoor Experiments on Bare Soil Surface

Experiments were conducted on bare soil during a
2-wk period at the end of June and beginning of July
2002, which showed a range of shade temperature. Re-
sults for the CP temperature, temperature difference
between CP and Rx, and EM-38 response for the five
experimental runs are presented in Fig. 5. All the experi-
ments started at 0900 h and finished at 1900 h. The scale
in Fig. 5 is relative, showing the time from the beginning
of the experiment, when the instrument was switched
on, to the end of the experiment. The experiment was
designed to mimic a typical data collection day where
the instrument had been stored overnight at 20°C, taken
outside, and used immediately.

The first four experiments were run with the instru-
ment directly exposed to the sunshine. The EM-38 re-
sponse for these 4 d is presented in Fig SC. Day 1 was
an extremely hot day with shade temperatures reaching

60FA) Instrument temperature
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Fig. 4. (A) Temperature response for control panel (CP) and receiving coil (Rx) of the EM-38 with the whole instrument wrapped in an electric
blanket and warmed. (B) The soil bulk electrical conductivity (EC,) response, which demonstrates the temperature compensation up to 140
min and then an unpredictable response as temperature increased above 40°C.
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45°C; Days 2 to 4 were progressively cooler. During
Days 2 to 4, (i) EC, data was observed to increase slowly
in the first 120 min of the experiment. (ii) A plateau
was reached for about 30 min, then (iii) values dropped
as temperatures continued to increase. This was similar
to the pattern of measured EC,, increasing, stabilizing
and then dropping as the temperature increased ob-
served during the indoor experiments (Fig. 4) The tem-
peratures at which these events occurred (40, 48, and
52°C) were also identical (Fig. 4 and 5). On all days the
instrument response showed jumps of increasing EC,
as the instrument began to cool. This occurred between
430 and 550 min, on Days 1 through 4 and showed no
consistent pattern.

On Day 1, the temperature of the CP of the instru-
ment at 0900 h was already 40°C. The response of the
instrument on this day was displaced with respect to
Days 2, 3, and 4 (Fig. 5C). The increase, plateau, and
decrease in response observed, when the CP tempera-
ture reached 40, 48, and 52°C, occurred at the beginning

of the experiment. In fact, by the time we started re-
cording a plateau could be observed which subsequently
decreased soon after. This decrease reached a 20% drop
below 0.5 dS m™' at the warmest part of the day.
Figure 5B shows the difference in temperature be-
tween the instrument CP and the receiver coil during the
experiment. In the middle of the day, the temperature of
the Rx was 20°C lower than in the CP. It appears that
the instrument is temperature compensating the coils
for temperatures they are not experiencing. This differ-
ence in temperature between the CP, where the temper-
ature sensor and compensation is located, and the re-
ceiver coil, for which it compensates, is in part due
to the black metallic CP cover. The overestimation of
receiver coil temperatures places the instrument out of
operational range for most of the day, when it is in direct
sun light, resulting in erroneously low values of EC,.
The last experiment was performed on a day with
temperatures equivalent to Day 3. This time the instru-
ment was entirely shaded using a white PVC plastic
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cover. The results for this experimental run became
relatively consistent after 120 min, indicating constant
soil EC,, as was expected (Fig. 5D). In the first 120 min
of this experiment a 14% increase in measured EC, was
observed coincident with a 2 to 3°C increase in soil
temperature (10-cm depth). However, the instrument
had been placed in the vertical orientation to avoid
response to surface soil heating or water loss. Even
if the instrument had responded to a change in soil
temperature, it was not sufficient to account for the
14% increase in measured EC,. This slow increase in
instrument response was likely due to a required warm
up period. The instrument was stored in the laboratory
over night at 20°C and took time to re-equilibrate to
the outdoor temperature. We found that the instrument
typically required at least 2 h to adjust when the differ-
ence between instrument storage temperature and out-
door temperature was 10°C or more. Though not shown
these measurements were replicated with a different
EM-38 borrowed from colleagues and similar results
were observed.

There is always a concern when making measure-
ments on soils that the responses observed are due to
changes in water content, or due to changes in the soil
temperature and thus EC,. We have suggested in our
argument that the changes in these factors would not be
consistent with the observed EM-38 response. However,
we conducted a further experiment using the previously
described setup but with the instrument located on an
impervious asphalt surface. By so doing we could com-
pletely rule out a change of water content influencing
the results. The heating of the asphalt might be pre-
dicted to cause a small if noticeable increase in bulk
electrical conductivity measured. Results from this ex-
periment are presented in Fig. 6. During the first 160
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min the instrument was covered with a shade and as
expected there was a marginal increase in the measured
bulk electrical conductivity. The shade was removed at
the time denoted by Line A and the panel temperature
rose rapidly. The EC, response showed a small fluctua-
tion rising and reaching a peak value with the panel at
48°C (Fig. 6, Point B). As the temperature continued
to rise the EC, response declined slightly. This decline
became steeper once the temperature in the panel
reached 52°C. Notice that the temperature under the
handle, next to the coil reached 40°C (Fig. 6, Point C).
This behavior was identical to the indoor experiment
shown in Fig. 3 in which we increased the temperature
abruptly in the central part of the EM-38. The signal
bottomed out at a value 17% lower than the initial value
measured in the morning (Fig. 6, Point D). At Point E
the instrument response increased abruptly as tempera-
tures were declining. Although the response increased,
it didn’t reach an EC, level similar to the morning until
all the temperatures dropped below 40°C (Fig. 6, Point F).
The response of the instrument on the asphalt confirmed
the instrument sensitivity to heating in direct sunlight.

Drift Observed in Field Mapping Data

Our data indicated that differential heating of the
instrument and CP temperatures over 40°C were one of
the causes of drift. The cause of this drift comes pri-
marily from the elevated instrument CP temperature
(40+°C), or lack of instrument warm up time when
taken to a new environment with differing temperature.
Our findings appear to be in good agreement with those
of Sudduth et al. (2001) who found a strong correlation
between temperature increase and EC, decline for field
measurements using a vertically oriented EM-38. We
agree with the comments of Sudduth et al. (2001) who
suggested that an I/P compensation in the instrument
was required. There is only a limited amount that can
be achieved by producing field compensations. It ap-
pears that the drift is a combination of instrument fac-
tors that come down to circuit design, placement of
temperature compensation sensors, and coil perfor-
mance under heating. If the circuit cannot be improved
it would be of great use to users in hot areas if informa-
tion such as I/P and coil temperature could be recorded
on the data logger. This means that potentially inaccu-
rate data could be removed from survey data.

In a personal communication with Geonics, we were
informed that the effect of temperature on the instru-
ment above 40°C is an absolute value. As an example
a 0.05-dS m~! absolute change for a ground conductivity
of 0.5 dS m'is a 10% change. However, at 5 dS m™'
this is only a 1% change. The drift highlighted in Fig. 1A
can be explained by an insufficient warm-up period of
time with the instrument having been taken from an
air-conditioned lab or truck before use in the field. This
may also explain why some users have trouble calibrat-
ing the instrument when arriving at field sites. Calibrat-
ing the instrument when it has not been given time to
equilibrate with outdoor temperatures and warm-up will
give a false calibration, as the instrument subsequently
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warms it may go out of calibration. We recommend as
for many electronic instruments a 1-h warm up for the
electronics (instrument switched on), and time to equili-
brate with ambient temperatures before checking in-
strument calibration (total of 2 h).

The jump observed in the data in Fig. 1B is consistent
with jumps in recorded EC, at around 550 min in Fig. 5C,
these jumps happened again toward the end of the day
as the instrument cooled down. We suggest that many of
these problems might be avoided by shading the instru-
ment as demonstrated in Fig. 5D. Since data collected
with clear skies and temperatures above 40°C are likely
to cause erroneous measurements, this simple solution
of shading the instrument should extend the working
range of the EM-38; giving more accurate EC, responses.
Surveys conducted at air temperatures above 40°C are
likely to result in erroneous underestimation of EC,.

CONCLUSIONS

Results presented in this work demonstrate that drift
observed in field data collected with the EM-38 is in
part due to elevated temperature conditions. When the
CP temperature rises above 40°C spurious EC, measure-
ments occur with EC, being increasingly underestimated
as temperature rises. Results suggest that shading the
instrument and keeping its operating temperature below
40°C can substantially improve results. This can reduce
the instrument panel temperature by as much as 20°C.
This is where the temperature compensation circuitry
is located and this can effectively extend the working
range of the instrument. We recommend allowing 2 h
for instrument warm up before calibration. We suggest
that this lack of warm-up time could be one cause of
drift often observed when rows are duplicated as a check
on readings during a survey. Following these simple
steps could improve measurement accuracy by as much
as 20% at low conductivity values.
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An Efficient Markov Chain Model for the Simulation of Heterogeneous Soil Structure

Keijan Wu, Naoise Nunan, John W. Crawford,* Iain M. Young, and Karl Ritz

ABSTRACT

The characterization of the soil habitat is of fundamental impor-
tance to an understanding of processes associated with sustainable
management such as environmental flows, bioavailability, and soil
ecology. We describe a method for quantifying and explicitly modeling
the heterogeneity of soil using a stochastic approach. The overall aim
is to develop a model capable of simultaneously reproducing the
spatial statistical properties of both the physical and biological compo-
nents of soil architecture. A Markov chain Monte Carlo (MCMC)
methodology is developed that uses a novel neighborhood and scan-
ning scheme to model the two-dimensional spatial structure of soil,
based on direct measurements made from soil thin sections. The model
is considerably more efficient and faster to implement than previous
approaches, and allows accurate modeling of larger structures than
has previously been possible. This increased efficiency also makes it
feasible to extend the approach to three dimensions and to simultane-
ously study the spatial distribution of a greater number of soil compo-
nents. Examples of two-dimensional structures created by the models
are presented and their statistical properties are shown not to differ
significantly from those of the original visualizations.

MODELS or soiL physical structure have been devel-
oped since the 1950s and used to interpret the
impact of structure on function. Childs and Collis-
George (1950) introduced the cut-and-rejoin models of
soil capillaries, which were modified by Marshall (1958).
While many models of soil structure have been devel-
oped since then, most relate the structure to physical
processes, generally ignoring heterogeneity (for exam-
ples see review by Young et al. [2001]), or assume simple
pore-size distribution models in an attempt to take some
qualitative account of spatial heterogeneity (Young and
Ritz, 2000). A number of the more sophisticated ap-
proaches exploit the observation that the structure is
spatially correlated. For example, Dexter (1976) used a
one-dimensional Markov chain model for horizontal soil
structure. Moran and McBratney (1997) proposed a
two-dimensional fuzzy random model of soil pore struc-
ture, which treats the pores as a fuzzy porous set rather
than explicitly dealing with geometry. In Vogel (2000)
a network model for water retention and permeability
is developed where the pore network is geometrically
idealized but can be used to predict physical properties
from topological parameters determined from thin sec-
tions. The geometry of the pore network is explicitly
described using a fractal-based approach in Crawford
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et al. (1995). Finally, Yeong and Torquato (1998) use
a combination of the two-point correlation function and
the lineal path function to characterize the pore geome-
try of a broad range of isotropic structures.

The most useful of these models has been used to
interpret the impact of structure on physical properties
and processes; but comparatively little work has exam-
ined the impact on biology. Some attempt has been
made to link biological processes with soil structure;
these have generally been limited to N transformations
(Young and Ritz, 2000). These studies have clearly dem-
onstrated the importance of understanding the relative
spatial distribution of the physical and biotic elements
of soil structure in determining the larger-scale proper-
ties of the resultant biological process (Arah et al., 1997;
Rappoldt and Crawford, 1999). Therefore there is a
need to further develop models of soil structure that
are capable of integrating the physical and biological
heterogeneities that occur in most soils. However there
are a number of challenges that place constraints on
appropriate methodologies, and one of the most signifi-
cant of these is the limitation of existing imaging tech-
nology.

The only reliable methods for visualizing soil in three
dimensions are y and X-ray tomography (Rogasik et
al., 1999). While the technology is rapidly improving, it
is not a trivial matter to differentiate between pore and
solid matrix in these visualizations. Although resolu-
tions of 5 wm or higher are now possible, it is still not
possible to directly image soil microbes in situ and in
three dimensions over comparable scales. The only
method for simultaneously imaging soil structure and
the distribution of microbes is by using biological thin
sections (e.g., Nunan et al., 2001, 2003). Therefore any
model of structure must be capable of being parameter-
ized from two-dimensional data and extrapolated to
three dimensions.

The requirements of a useful model capable of de-
scribing the heterogeneity of physical and biological
elements in soil are three-fold. First, the models must
be able to describe the spatial structure of multiphase
media (matrix, pore, microbe etc.) at the scale of individ-
ual pores and microbes. Second, the model must also
accommodate any spatial anisotropy inherent in soil.
Finally, the model should be capable of using parame-
ters determined from two-dimensional sections. Cur-
rently, no method exists that has been demonstrated to
simultaneously satisfy these requirements. Yeong and
Torquato (1998) state that their method can be devel-
oped to satisfy these constraints, although to date no
such modification has appeared. The development of
their method based on correlation functions, to multi-

Abbreviations: MCMC, Markov chain Monte Carlo;: MRF, Markov
random fields.
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phase anisotropic media is far from a trivial extension
of the existing methodology.

In this paper, we introduce an efficient method for
modeling the architecture of soil, based on two-dimen-
sional images obtained from soil thin sections. The algo-
rithm is based on a Markov chain process that permits
the macroscopic (centimeter scale) properties to be de-
termined from local (pore scale) conditions. A Monte
Carlo implementation is used to reproduce the stochas-
tic properties of the architecture and to estimate fea-
tures of the posterior or predictive distribution of inter-
est by using samples drawn from images derived from
real soil.

Markov chain Monte Carlo methods usually employ
an iterative scheme to obtain the final spatial description
(Besag and Green, 1993), and where correlated struc-
tures of the order of the image size exist (such as mac-
ropores in soil thin sections) the iterative schemes are
slow to converge or may even fail. The development of
MCMC presented in this paper avoids these problems
by a novel choice of neighborhood for the Markov chain
and the use of a scanning scheme, based on Elfeki and
Dekking (2001) but without the requirement for precon-
ditioning, in which the model image is constructed from
a single-pass raster. The resulting structure models are
quantitatively compared with the original images to test
the validity of the approach. A brief discussion of the
applicability of the method to extrapolate to three-
dimensions is presented, although a full treatment is
deferred to a forthcoming paper. Finally, the trivial ex-
tension to simultaneously modeling the biological and
physical components of soil architecture in three-dimen-
sions is outlined.

MATERIALS AND METHODS

Methodology

A detailed description of Markov random fields (MRF) can
be found in Besag (1974), Geman and Geman (1984) and
Cressie (1993). Markov theory lends itself to modeling soil
precisely because the structure of soil is spatially correlated.
This means that the structural state at any particular point in
space is conditionally dependent on the state in the vicinity.
Formally, the neighborhood where such dependency prevails
is predefined and these dependencies are expressed in the
form of conditional probabilities.

In using the MRF method to model visualizations such as
those in the current application, a central assumption is that
the state of the structure at some point conditionally depends
on only a relatively small number of points in a predefined
neighborhood. Implementation of the algorithm commences
with the derivation of the conditional probabilities from direct
measurements of the probabilities of different neighborhood
structures in an image of soil structure. The generation of
model structures starts with an initial estimate of the spatial
distribution of states (e.g., a spatially random distribution).
The structure at each point is then updated in accordance
with the conditional probabilities derived from the image.
This update is then repeated by successive applications of
the conditional probabilities at each point, until the statistical
properties of the resulting spatial distribution converge (i.c.,
do not change significantly between successive iterations).
Larger-scale correlations emerge as a consequence of the local

dependency built into the conditional probabilities, but only
after a number of iterations of the algorithm. Indeed a major
limitation of the application of the conventional MRF method
is the tendency to a convergence slowly and an associated
high computational demand. This limits the application to
systems where the number of states of each point is low, and
where there are only relatively short-range spatial correlations
in the structure. Furthermore, the standard implementation
of the method cannot reproduce nonisotropic structures, nor
can it recognize concavity or convexity of shapes (Tjelmeland
and Besag, 1998). Thus, this renders the method inappropriate
for modeling most soil structures.

Elfeki and Dekking (2001) employed a raster scheme within
a MCMC approach to simulate geological strata. Their model
was parameterized from data collected from a set of wells,
and they assumed that the state of a particular point in the
strata was dependent on the points immediately to one side
and to the top. Therefore if the state of the points are known
along a transect at the surface and in a vertical direction at a
single well location, it is possible to use the model to predict
the state of the remaining points in the transect-well plane.
The model calculates the state of a particular point on the
basis of the state of the point to the left and above, and the
conditional probabilities associated with the Markov process.
This is repeated in a step-wise way as the chain moves from
left to right across the domain in a raster fashion. Crucially,
however, to get an accurate representation the chain must be
conditioned on several wells across the transect. Therefore
the probabilities are adjusted to guarantee agreement with
the well data (Elfeki and Dekking, 2001). This approach is
appropriate for data on geological strata since the number of
wells that can be drilled always limits one, and the aim is
to reproduce the actual structure as closely as possible. The
purposes are quite different to those of the algorithm pre-
sented here. In our case, we have complete information about
the state of the points in a two-dimensional domain (i.e., soil
thin section), and we aim to reproduce the functionally impor-
tant statistical properties of the structure rather than a literal
copy of the structure itself. The method should alse be ex-
tendable to three dimensions, and for the reasons outlined
above, we are restricted to methods that can extrapolate from
two-dimensional data. The method of Elfeki and Dekking
(2001) is then inappropriate.

Multidimensional Markov Chain Model

We consider an image made up of pixels arranged in a
rectangular array. The standard implementation of the MRF
method assumes that the state of a particular point in an image
depends on the state of an isotropic neighborhood centered
about the point. As this is unsuitable for modeling anisotropic
soil structures, we proceed by removing this constraint.

The Potential Function

The standard MRF method calculates the required condi-
tional probability from a potential function defined in an iso-
tropic neighborhood. The fundamental framework contains
the following components:

(i) a set S = |x|x € S} of (pixel) sites;
(ii) a set N = {n,Jn € N} attached to the site;
(iii) a probability model, for the joint distribution of the S.

p(x)> eXP[% G\("\)} [1]

Here we redefine the neighborhood as one based on five pixels
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Fig. 1. Notation relating to neighborhood system adopted in this
study. (a) Two-pixel neighborhood; (b) five-pixel neighborhood.

forming an anisotropic neighborhood as illustrated in Fig. 1.
Thus, the state of any given pixel is assumed to depend on the
two pixels immediately to its left, and on the three immediately
above it.

The conditional probabilities are then determined from
the relation:

P(X; = x|%p—150%1) = PRi|Xi—1)
N N-1
xexp 2 &ilxy) + 2 [Gylxy, xij-1) + Gilxyy ij1)]

j=1 =1

J / [2]
where Nis the number of neighbors, g; and G;; are the potential
functions, and x; represents the state of the pixels at positions
(i,7). Because of the difficulty in parameterizing the potential
function, these models are usually generalized to involve an
arbitrary structure of pairwise pixel interactions (Gimel’farb,
1999). There have only been a few attempts to broaden the
class of these models by introducing potential functions with
more complex neighborhoods, including the Gibbs model
(Moussouris, 1974) and region maps (Derin and Elliot, 1987).
The associated potentials for the formulae have only two val-
ues: G, (n,) = 0,, if all states x in the neighborhood n, are
equal, and —8, otherwise. For higher-order interactions, the
potential functions are assumed to be a linear function of
parameters, which can be derived from an image only under
such simplified assumptions.
The advantage of determining the probabilities from the po-
tential function is that the neighborhood interactions of an
entire image can be represented by relatively few parameters.

(b)

However, the apparent compactness is a consequence of the
assumption that the potential functions can be expressed as
alinear function of the parameters. Because of this, the param-
eters can be estimated using maximum-likelihood methods
(Qian and Titterington, 1991). This appears to work for many
kinds of images, but its applicability to images of soil, where
relatively long-range correlations exist, has not been verified.
We attempted to model the structure of our soil samples by
calculating the potential function. However, the resulting
model structures were inadequate. For moderate-sized images,
the modeled structure showed substantial departures from the
original (parent) structure, and as the size of the modeled
domain increased, the agreement deteriorated further (Fig. 2).
Thus, the simplifying assumptions underlying the linear formu-
lation of the potential functions are incompatible with the
image structures associated with soil. We therefore developed
an alternative method based on direct measurement of the 64
conditional probabilities associated with all possible configura-
tions of the five-pixel neighborhood (Fig. 1).

Markov Chain Monte Carlo Method

While the definition of the neighborhood as defined in Fig. 1
provides the potential to treat anisotropy, this change alone
is clearly insufficient, and an alternative to the determination
of conditional probabilities from the potential functions must
be found. To this end, we replace the potential functions with
the full set of conditional probabilities that define all possible
combinations of states for the neighborhood. In the case stud-
ied here, we aim to model the relative position of pore space
and solid, and so each pixel can be in one of two possible states.

The standard methods for implementing MCMC are itera-
tive, for example, the Gibbs sampler version of the Metropolis
Hastings algorithm (Geman and Geman, 1984). However,
these suffer from long convergence times as discussed above,
and are not suitable for modeling large correlated structures
such as are found in soil. Here, we use a more efficient method
based on the scanning scheme algorithm proposed by Qian
and Titterington (1991), modified to cope with long-range
correlations in the structural heterogeneity found in soil im-
ages. The modification replaces the potential function with a
more explicit determination of the transition probabilities as
detailed below.

Fig. 2. Comparison of simulated soil images with real images. The size of each image is 1.6 by 1.2 cm. (a) Original soil image with anisotropic,
linear pore structure. (b) Simulated image using the potential function; (c) simulated image using the scan scheme. (d) Original soil image
containing pores of the order of the image size; (e) simulated image using the potential function; (f) simulated image using the scan scheme.
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The Scanning Scheme Algorithm

After considering several different forms for the neighbor-
hood. we determined that the neighborhood given in Fig. 1
was the smallest capable of reproducing the observed soil
properties. The modeling proceeds in two steps. First, the
state of the pixel located at the point (i,j) is determined from
knowledge of those at (i,j — 1), (¢ — 1,7 — 1), (i — 1,j), and
(i = 1,/ + 1) using the associated four-neighborhood condi-
tional probability. Second, the state of the pixel at (i,j + 1)
is obtained from knowledge of the new state at (i,j) together
with the state of the those at (i,j — 1), (i — 1.j — 1), (i — 1,
j),and (i — 1,7 + 1) using the associated five-neighborhood
conditional probability. These probabilities are obtained from
the original image by sampling the four- and five-neighbor-
hoods, and enumerating the different realizations of the state
of the point (i,j) and (i,j + 1) respectively for each configura-
tion of the neighborhood.

To initiate the model we need to assign states to all the
cells in the first row, and the first cell of the next row. The
cells in the first row are obtained using a two-neighborhood
Markov chain where the state of a cell is conditionally depen-
dent on the state of the cell to its left. The parameters for this
Markov chain are obtained as above, but using the smaller
two-cell neighborhood. The state of the first cell of the next
row is determined using the same two-neighborhood condi-
tional probability. Using these boundary values, the chain runs
from the left-hand corner of the image and progresses in raster
fashion across the image to the right-hand side. First, the state
of cell (i) in the neighborhood is evaluated, followed by the
state of cell (4, + 1). The neighborhood is then advanced two
cells to the left and the process is repeated. This continues
until the last cell on the right-hand side is reached and its
state is evaluated. At this point, the cells in the first two rows
have been evaluated. Next, the neighborhood remains at the
right-hand side but moves one row down. The chain now
reverses direction, and instead of deriving the states of the
(i,j) and (i,j + 1) cells in terms of the state of the others, it
is the states of cells (i,j) and (i, j — 1) that are determined.
However, before the chain can proceed leftwards, the state
of the first cell on the right-hand side of the third row must
be evaluated. This is done in the same way as when the neigh-
borhood was at the left-hand side of the domain, using the
two-neighborhood conditional probability. The chain can now
advance leftwards until the left-hand side of the domain is
reached. The neighborhood then moves down one row, and
the chain reverses as before. Thus, the whole domain is
scanned in a raster-like fashion on this basis, until the states
of all the required cells are obtained.

The scanning scheme algorithm converges rapidly. In the
examples reported here, we observed the transition kernel
(i.e.. the matrix of conditional probabilities for all possible
neighborhood configurations), calculated from the recon-
structed image as the chain progressed. Almost all the proba-
bilities had become stable after the chain had completed 200
rows, which is equivalent to a depth of 4.0 mm in the original
soil section and takes about 10 s of computing time on a 1.7-
GHz Pentium I'V computer. In other words, the minimum size
of a simulated representative soil image should be 0.6 by 0.4
cm?, and it takes only a few minutes to generate an image
covering several squared.

Validation

The method was validated using images obtained from soil
thin sections and selected to represent a broad contrast in
structural properties.

Sampling

Soil cores were collected from an arable field and thin
sections were produced using the method described in Nunan
et al. (2001). Soil pore maps were obtained by subtracting
images obtained with cross-polarized light from images cap-
tured using transmitted bright-field light. The resultant images
were then segmented into solid and void. The images em-
ployed in this study were binary pore maps of dimension 760
by 570 pixels, representing an area of 1.6 by 1.2 cm. Images
were selected to represent a range of characteristic soil struc-
tural properties, as shown below.

Comparison of Real and Simulated Images

To compare the simulated and real images we selected a
range of quantitative metrics that characterize the heterogene-
ity and connectivity of the structures under investigation. The
most obvious of these is the porosity and this is readily deter-
mined from both the real and simulated structures. The corre-
sponding values are listed in Table 1 and range from 7 to
24% in the real structures. There was no significant difference
between the porosities in the simulated and real structures
(P > 0.05, paired ¢ test).

The second metric adopted was the mass fractal dimension,
which essentially characterizes the degree of aggregation of
the solid matrix. The mass (solid) fractal dimension was deter-
mined by the box counting method (Hastings and Sugihara,
1993). The calculated values are listed in Table 1, and again
there was no significant difference between the simulated and
real structures (P > 0.05, paired ¢ test).

The third and fourth metrics chosen characterize the pore
space, where visually obvious differences between the samples
were present. The third is the variance of the porosity as
measured in a 0.4 by 1.6 mm sampling window placed at 50
random locations in each image. For a given porosity, this is
a measure of the connectivity of the pore space (Mandelbrot,
1985). We used the Chi-Square goodness-of-fit test, and tested
the null hypothesis that the variances in each pair of simulated
and original images were different. This could be rejected at
the 95% confidence level indicating that this aspect of the
structure of the pore space was not significantly different in
the real and simulated images. The fourth metric measured
the spatial correlation of the pore space by determining the
semivariogram. Figure 3 shows the variograms for the different
soil samples used in this study, and there are clear differences
in these between the different soil sections. The figure shows
the comparison between the variograms for the real and simu-
lated structures. There is no formal statistical way of compar-
ing the properties of semivariograms, however the high degree
of correspondence between the curves for the measured and
simulated structures is good, adding further support for the
modeling methodology.

Table 1. Comparison of soil properties between real image and
simulated image

Real soil Simulated
image image
Sample 1 Porosity, % 7 7]
Mass fractal dimension, D, 1.9642 1.9654
Sample 2 Porosity, % 17 16
Mass fractal dimension, D,, 1.9382 1.9322
Sample 3 Porosity, % 24 22
Mass fractal dimension, D,, 1.9204 1.9366
Sample 4 Porosity, % 12 11
Mass fractal dimension, D, 1.9599 1.9503
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Sample 1

Sample 2 B

Sample 3 ®

Sample 4

(a) real soil image

soil thin sections); (b) associated simulated image; (¢) semivariograms of pore space in original and

CONCLUSIONS AND DISCUSSION

We describe a new method for modeling the complex
architecture of soil. The method is based on a MCMC
approach, but incorporates a novel neighborhood defi-
nition and scanning scheme to model large-scale spatial
correlations with rapid convergence. In this approach
the state of a pixel in the model image is conditionally
dependent on the state of the pixels in the predefined
neighborhood. The associated conditional probabilities
are calculated directly from a segmented image obtained
from a thin section of soil. The method reproduces the
mean and spatial variance of the porosity, and fractal
dimension of the matrix as well as the spatial variogram
of the pore space, as estimated from original thin section
images. Agreement was obtained with images of widely
contrasting soil structures. As well as being capable of
modeling broad-scale heterogeneity, the method is also
more efficient and therefore faster than previous ap-
proaches. As a consequence, we can simulate larger

(b) simulated image

Fig. 3. Some examples of soil thin section images and associated simulated images (each image size is

o Measured

—— Simulated

2.5 mm

2.5mm

2.5mm

oo°°°°°° 00000000000000000

0.5 1.0 1.5 20 2.5mm

Distance

(c) variogram

1.6 by 1.2 cm) (a) original images (i.e.,
simulated images.

structures than has previously been possible and so link
pore-scale to core-scale. By linking with suitable models
for physical processes, it should now be possible to
search for scaling laws from first principals that relate
the impact of microscopic detail on macroscopic be-
havior.

The method is easily extendable to simultancously
model the spatial distribution of a variety of components
of soil architecture. In the current paper, we verified
the approach by modeling the physical elements hence
each pixel could be in one of two states— pore or solid.
In a forthcoming publication, we have extended the
approach to model the relative spatial distribution of
microbes in soil, parameterized directly from soil thin
sections that have been prepared in a manner that pre-
serves the microbes in situ (Nunan et al., 2003).

While it is of interest to be able to produce two-
dimensional models of the different components of soil
architecture that have the same statistical properties as
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real soil, the most important advantage of the current
approach is that is has the ability to extrapolate to three
dimensions. The efficiency of the algorithm together
with a Markov process that is based on local neighbor-
hood, without the need to condition the chain on existing
data, makes it possible to consider modeling large three-
dimensional structures. This means it is possible to pro-
duce models for the three-dimensional distribution of
microbes in structured soil for the first time. This can
be combined with efficient algorithms for modeling un-
saturated flow through porous media (e.g., Zhang et al.,
2002) and the distribution of O, (Rappoldt and Craw-
ford, 1999) to begin to understand how the physical and
biological processes in soil interact. Again, the ability
to relate pore- to core-scale means we can approach the
issue of possible scaling laws from first principals. By
linking microbes and their microhabitats directly in this
way, the potential for theoretical and experimental soil
ecology is significantly advanced.

ACKNOWLEDGMENTS

This work was part-funded by a UK Department of Trade
and Industry Award in the Biological Treatment of Soil and
Water LINK Programme, and is carried out in association with
Aventis and QuantiSci. The Scottish Crop Research Institute
receives grant-in-aid from the Scottish Executive Environment
and Rural Affairs Department.

REFERENCES

Arah J.R.M., J.HM. Thornley, P.R., Poulton, and D.D. Richter. 1997.
Simulating trends in soil organic carbon in long-term experiments
using the ITE (Edinburgh) Forest and Hurley Pasture ecosystem
models. Geoderma. 81:61-74.

Besag, J. 1974. Spatial interaction and the statistical analysis of lattice
systems (with discussion). J. Royal Stat. Soc. Ser. B 36:192-236.

Besag, J., and P.J. Green. 1993. Spatial statistics and Bayesian compu-
tation. J. Royal Stat. Soc. Ser. B 55:25-37.

Childs, E.C., and N., Collis-George. 1950. The permeability of porous
materials. Proc. R. Soc. London, Ser. A 201:392-405.

Crawford, J.W., N. Matsui, and I.M. Young. 1995. The relation be-
tween the moisture-release curve and the structure of soil. Eur. J.
Soil Sci. 46:369-375.

Cressie, N.C. 1993. Statistics for Spatial Data, rev. ed. Wiley-Intersci-
ence, Hoboken, NJ.

Derin, H., and H. Elliot. 1987. Modelling and segmentation of noisy

and textured images using Gibbs random fields. IEEE Trans. Anal.
Machine Intell. PAMI-9:39-55.

Dexter, A.R. 1976. Internal structure of tilled soil. J. Soil Sci. 27:
267-278.

Elfeki, A., and M. Dekking. 2001. A Markov chain model for subsur-
face characterization: Theory and applications. Math. Geol. 33:
569-589.

Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images. IEEE T. Pattern
Anal. Machine Intell. PAMI 6:721-741.

Gimel'farb, G.L.1999. Image textures and Gibbs random field. Kluwer
Academic Publishers, Dordrecht.

Hastings, H.M., and G. Sugihara. 1993. Fractals: A user’s guide for
the natural sciences. Oxford University Press, Oxford.

Mandelbrot, B.B. 1985. The fractal geometry of nature. W.H. Free-
man & Co., New York.

Marshall, T.J. 1958. A relation between permeability and size distribu-
tion of pores. J. Soil Sci. 9:1-8.

Moran, C.J., and A.B. McBratney. 1997. A two-dimensional fuzzy
random model of soil pore structure. Math. Geology 29:755-777.

Moussouris, J. 1974. Gibbs and Markov random systems with con-
straints. J. Stat. Phys. 10:11-33.

Nunan, N., K. Wu, K. Ritz, I., Young, and J.W. Crawford. 2001. Quanti-
fication of the in situ distribution of soil bacteria by large-scale
imaging of thin-sections of undisturbed soil. FEMS Microbiol. Ecol.
36: 67-77

Nunan, N., K. Wu, L., Young, J.W. Crawford, and K. Ritz, 2003. Spatial
distribution of bacterial communities and their relationships with
the micro-architecture of soil. FEMS Microbiol. Ecol. 44: 203-215

Qian, W., and D.M. Titterington. 1991. Multidimensional Markov-
chain models for image-textures. J. Roy. Stat. Soc. Ser. B 53:
661-674.

Rappoldt, C., and J.W. Crawford. 1999. The distribution of anoxic
volume in a fractal model of soil. Geoderma 88:329-347.

Rogasik, H., J.W. Crawford, O. Wendroth, .M. Young, M. Joschko,
and K. Ritz. 1999. Discrimination of soil phases by dual energy
x-ray tomography. Soil Sci. Soc. Am. J. 63:741-751.

Tjelmeland, H., and J. Besag. 1998. Markov random fields with higher-
order interactions. Scand. J. Stat. 25:415-433.

Vogel, H.J. 2000. A numerical experiment on pore size, pore connec-
tivity, water retention, permeability, and solute transport using
network models. Eur. J. Soil Sci. 51:99-105.

Yeong, C.L.Y., and S. Torquato. 1998. Reconstructing random media.
Phys. Rev. E. 57:495-506.

Young, .M., and K. Ritz. 2000. Tillage, habitat space and function
of soil microbes. Soil Tillage Res. 53:201-213.

Young, .M., J.W. Crawford, and C. Rappoldt. 2001. New methods
and models for characterizing structural heterogeneity of soil. Soil
Tillage Res. 61:1-13.

Zhang, X.X., A.G. Bengough, J.W. Crawford, and I.M. Young. 2002.
A lattice BGK model for advection and anisotropic dispersion
equation. Adv. Water Resour. 25:1-8.



Millimeter-Scale Spatial Variability in Soil Water Sorptivity: Scale, Surface Elevation,
and Subcritical Repellency Effects

P. D. Hallett,* N. Nunan, J. T. Douglas, and 1. M. Young

ABSTRACT

Recent evidence suggests that reduced water infiltration may be
linked to small scale microbial and/or chemical processes that cause
subcritical water repellency. We measured water sorptivity on the
surface of a large intact block of soil (0.9 m wide, 1.3 m long, 0.25 m
deep) taken from a grassland site and examined the effects of surface
elevation and water repellency on water sorptivity at the millimeter
scale. The soil block was partially dried to 0.22 mm® mm °, appeared
to wet readily, and is not severely water repellent at any water content.
Water sorptivity varied from 0.1 to 0.8 mm s ' across the sampling
grid with a coefficient of variation (CV) of 0.57. Water repellency,
determined by comparing water and ethanol sorptivities, also varied
considerably (CV = 0.47). Geostatistical analyses of water sorptivity
and repellency measurements found little evidence of spatial autocor-
relation, suggesting a high degree of local variability. These data were
compared to larger scale measurements obtained with conventional
infiltrometers under tension conditions (40 mm contact radius), and
ponded conditions (37 and 55 mm radius rings) where macropores
influence infiltration heterogeneity. Larger scale tension infiltrometer
measurements were less variable with a CV of 0.22, whereas ponded
infiltrometer measurements were more variable, CV > (.50, presum-
ably because of the influence of macropore flow. Data collected on
surface elevation showed that ponded infiltration but not tension
infiltration was influenced by surface topography. The results sug-
gested that repellency can induce levels of spatial variability in water
transport at small scales comparable to what macropores induce at
larger scales.

OW LEVELS OF water repellency have been observed

in many soils (Hallett et al., 2001; Wallis et al.,
1991; Tillman et al., 1989). Although water appears to
readily infiltrate these soils, it has been postulated that
the slight, yet significant, reduction in infiltration rates
through repellency can cause an increase in soil aggre-
gate stability, and in the heterogeneity of overland flow
and water infiltration at the field scale (Hallett and
Young, 1999). Most studies on the heterogeneity of wa-
ter infiltration and overland flow have concentrated on
the influence of macropores and other dominant soil
pore structure features serving as preferential flow path-
ways (Smettem, 1987; Heuvelmann and McInnes, 1997).
We hypothesize that low levels of repellency will also
exhibit high levels of spatial variability across the surface
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of soil, and that this will add additional heterogeneity,
particularly under conditions of tension infiltration
when macropores are less important.

The concept of low level or subcritical water re-
pellency is not new. Soil physicists are taught the impor-
tance of soil-water contact angles early on in their un-
dergraduate syllabus and Philip (1957) recognized the
importance of repellency in his original work on sorptiv-
ity, but despite this knowledge, it is widely ignored in
current research as soil is assumed to be completely
nonrepellent. Tillman et al. (1989) developed a simple
technique for quantifying repellency and with these data
suggested that most soils exhibit subcritical water re-
pellency where despite the soil appearing to uptake
water readily, partially hydrophobic soil particle sur-
faces impede the rate of infiltration. Hallett and Young
(1999) combined Tillman et al.’s (1989) approach with
a miniaturized infiltrometer developed by Leeds-Har-
rison et al. (1994) to allow for water repellency to be
measured on individual soil aggregates at millimeter
resolution. Subsequent work using this new technique
showed that repellency had a biological origin con-
trolled by organism type (White et al., 2000), nutrient
levels (Hallett and Young, 1999) and exudate chemistry
(Czarnes et al., 2000).

The biological origin of repellency suggests that it
will have a high spatial and temporal variability at very
small scales, because of the submillimeter spatial vari-
ability of organic matter, organisms and the microbial
environment in soil (Nunan et al., 2002). Using the min-
iaturized infiltrometer, we measured water sorptivity on
the surface of a large intact block of soil to determine
its spatial heterogeneity at the microscale and the effect
of surface elevation and subcritical water repellency.
These data were compared with larger scale measure-
ments obtained with conventional infiltrometers (Logs-
don and Jaynes, 1996; Shouse et al., 1994) under ponded
conditions where macropores influence infiltration het-
erogeneity, and under tension conditions where hetero-
geneity would be expected to be less severe because
measurements were above a size threshold where re-
pellency variability is detectable. Data were also col-
lected on surface topography since depressional storage
may affect measurements and can operate over a range
of scales, perhaps smaller than the size of the infiltro-
meter (Kamphorst et al., 2000). Geostatistics were ap-
plied to measure spatial variability and to detect any
potential spatial pattern and dependency in water infil-
tration at the different spatial resolutions examined.

This work is highly relevant to describing physical and
biological phenomena that may impart heterogeneity to
the overland flow and infiltration of water in soil at

Abbreviations: CV, coefficient of variation.



