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Preface

No applied mathematician can be properly trained without some basic un-
derstanding of numerical methods, i.e., numerical analysis. And no scientist
and engineer should be using a package program for numerical computa-
tions without understanding the program’s purpose and its limitations.
This book is an attempt to provide some of the required knowledge and
understanding. It is written in a spirit that considers numerical analysis
not merely as a tool for solving applied problems but also as a challenging
and rewarding part of mathematics. The main goal is to provide insight
into numerical analysis rather than merely to provide numerical recipes.

The book evolved from the courses on numerical analysis I have taught
since 1971 at the University of Géttingen and may be viewed as a successor
of an earlier version jointly written with Bruno Brosowski [10] in 1974. It
aims at presenting the basic ideas of numerical analysis in a style as concise
as possible. Its volume is scaled to a one-year course, i.e., a two-semester
course, addressing second-year students at a German university or advanced
undergraduate or first-year graduate students at an American university.

In order to make the book accessible not only to mathematicians but
also to scientists and engineers, I have planned it to be as self-contained as
possible. As prerequisites it requires only a solid foundation in differential
and integral calculus and in linear algebra as well as an enthusiasm to see
these fundamental and powerful tools in action for solving applied prob-
lems. A short presentation of some basic functional analysis is provided in
the book to the extent required for a modern presentation of numerical
analysis and a deeper understanding of the subject.



vi Preface

An introductory book of a few hundred pages cannot completely cover
all classical aspects of numerical analysis and all of the more recent devel-
opments. I am willing to admit that the choice of some of the topics in the
present volume is biased by my own preferences and that some important
subjects are omitted.

I was taught numerical analysis in the mid sixties by my thesis adviser,
Professor Erich Martensen, at the Technische Hochschule in Darmstadt.
Martensen’s perspective on teaching mathematics in general and numeri-
cal analysis in particular had a great and long-lasting impact on my own
teaching. Therefore, this book is dedicated to Erich Martensen on the oc-
casion of his seventieth birthday.

I would like to thank Thomas Gerlach and Peter Otte for carefully read-
ing the book, for checking the solutions to the problems, and for a number
of suggestions for improvements. Special thanks are given to my friend
David Colton for reading over the book for correct use of the English lan-
guage. Part of the book was written while I was on sabbatical leave at the
Department of Mathematical Sciences at the University of Delaware and
the Department of Mathematics at the University of New South Wales. I
gratefully acknowledge the hospitality of these institutions. I also am grate-
ful to Springer-Verlag for being willing to take the economic risk of adding
yet another volume to the already huge number of existing introductions
" to numerical analysis.

Goéttingen, September 1997 Rainer Kress
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Glossary of Symbols

Sets and Spaces

N set of natural numbers

y// set of integers

R set of real numbers

C set of complex numbers

|z absolute value of a real or complex number z

(a,b) open interval (@,b) := {z € R:a <z < b}

[a,b] closed interval [a,b] := {z € R:a < z < b}

T conjugate of a complex number z

R" n-dimensional real Euclidean space

ct n-dimensional complex Euclidean space

Cla, b] space of real- or complex-valued continuous
functions on the interval [a, b)

C™[a, b space of m-times continuously
differentiable functions

L[a,b] space of real- or complex-valued
square-integrable functions

{a1,-..,am} set of m elements ay,...,an,

UxV product U x V := {(z,y):z € U,y € V}
of two sets U/ and V

U\v differenceset U\ V:={z €U :z2 ¢V}
for two sets U and V

U closure of a set U

F: XY a mapping with domain X and range in Y

w\P\(\k‘H 3}
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Glossary of Symbols

Vectors and Matrices

= ($1,.--,In)
T = (z1,...,20)7
Tt = (E],...,f:n)T
A= (ajk)

AT

Al

At

A—l

det A

cond(A)

p(A)

I

diag(ay,...,an)

Norms

i1l
Il
Il ll2
Il - lloo
("')

Miscellaneous

oosSCcnm,
)

row vector in R"™ or C"

with components z;,...,Z,

the transpose of z, i.e., a column vector
the adjoint of z

m X n matrix with elements a;i

the transpose of A

the adjoint of A

the pseudo-inverse of A

the inverse of an n x n matrix A

the determinant of an n x n matrix A4
the condition number of an n x n matrix A
the spectral radius of an n x n matrix A
the n x n identity matrix

diagonal matrix with

diagonal elements a,,...,a,

norm on a linear space

£, norm of a vector, L; norm of a function
£5 norm of a vector, Ly norm of a function
maximum norm of a vector or a function
scalar product on a linear space

element inclusion

set inclusion

union and intersection of sets
empty set

a quantity of order m

end of proof
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1

Introduction

Numerical analysis is concerned with the development and investigation of
constructive methods for the numerical solution of mathematical problems.
This objective differs from a pure-mathematical approach as illustrated by
the following three examples.

By the fundamental theorem of algebra, a polynomial of degree n has
n complex zeros. The various proofs of this result, in general, are noncon-
structive and give no procedure for the explicit computation of these zeros.
Numerical analysis provides constructive methods for the actual computa-
tion of the zeros of a polynomial.

The solution of a system of n linear equations for n unknowns can be
given explicitly by Cramer’s rule. However, Cramer’s rule is only of the-
oretical importance, since for actual computations it is completely useless
for linear systems with more than three unknowns. An important task
in numerical analysis consists in describing and developing more practical
methods for the solution of systems of linear equations.

By the Picard-Lindeldf theorem, the initial value problem for an ordinary
differential equation has a unique solution (under appropriate regularity as-
sumptions). Despite the fact that the existence proof in the Picard-Lindel6f
theorem actually is constructive through the use of successive iterations, in
applied mathematics there is need for more effective procedures to numer-
ically solve the initial value problem.

In general, we may say that for the basic problems in numerical analysis
existence and uniqueness of a solution are guaranteed through the results
of pure mathematics. The main topic of numerical analysis is to provide
efficient numerical methods for the actual computation of the solution. In



