RNA:Protein Interactions

A PRACTICAL APPROACH

Edited by CHRISTOPHER W. J. SMITH

The Practical Approach Series Series Editor: B. D. Hames

http://www.oup.co.uk/PAS

RNA:Protein Interactions

A Practical Approach

Edited by

CHRISTOPHER W. J. SMITH

Department of Biochemistry University of Cambridge

Oxford New York Tokyo
OXFORD UNIVERSITY PRESS
1998

Oxford University Press, Great Clarendon Street, Oxford OX2 6DP

Oxford New York

Athens Auckland Bangkok Bogota Buenos Aires
Calcutta Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong
Istanbul Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Paris São Paolo Singapore Taipei Tokyo Toronto Warsaw

and associated companies in Berlin Ibadan

Oxford is a trade mark of Oxford University Press

Published in the United States by Oxford University Press Inc., New York

© Oxford University Press, 1998

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press. Within the UK, exceptions are allowed in respect of any fair dealing for the purpose of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act, 1988, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms and in other countries should be sent to the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

Users of books in the Practical Approach Series are advised that prudent laboratory safety procedures should be followed at all times. Oxford University Press makes no representation, express or implied, in respect of the accuracy of the material set forth in books in this series and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data (Data available)

> ISBN 0 19 963651 6 (Hbk) ISBN 0 19 963650 8 (Pbk)

Typeset by Footnote Graphics, Warminster, Wilts Printed in Great Britain by Information Press, Ltd, Eynsham, Oxon.

The Practical Approach Series

SERIES EDITOR

B. D. HAMES

Department of Biochemistry and Molecular Biology University of Leeds, Leeds LS2 9JT, UK

See also the Practical Approach web site at http://www.oup.co.uk/PAS ★ indicates new and forthcoming titles

Affinity Chromatography

★ Affinity Separations

Anaerobic Microbiology

Animal Cell Culture (2nd edition)

Animal Virus Pathogenesis

Antibodies I and II

Antibody Engineering

- **★** Antisense Technology
- \star Applied Microbial Physiology

Basic Cell Culture

Behavioural Neuroscience

Bioenergetics

Biological Data Analysis

Biomechanics—Materials

Biomechanics—Structures and Systems

Biosensors

Carbohydrate Analysis (2nd edition)

Cell-Cell Interactions

The Cell Cycle

Cell Growth and Apoptosis

Cellular Calcium

Cellular Interactions in Development

- Cellular Neurobiology

 ★ Chromatin
- Clinical Immunology
- **★** Complement

Crystallization of Nucleic Acids and Proteins

Cytokines (2nd edition)

The Cytoskeleton

Diagnostic Molecular Pathology I and II

DNA and Protein Sequence Analysis

DNA Cloning 1: Core Techniques (2nd edition)

DNA Cloning 2: Expression Systems (2nd edition)

DNA Cloning 3: Complex Genomes (2nd edition)

DNA Cloning 4: Mammalian Systems (2nd edition)

★ Drosophila (2nd edition)

Electron Microscopy in Biology

Electron Microscopy in Molecular Biology Electrophysiology Enzyme Assays **Epithelial Cell Culture** Essential Developmental Biology Essential Molecular Biology I and II Experimental Neuroanatomy Extracellular Matrix Flow Cytometry (2nd edition) Free Radicals Gas Chromatography Gel Electrophoresis of Nucleic Acids (2nd edition)

- ★ Gel Electrophoresis of Proteins (3rd edition) Gene Probes 1 and 2 Gene Targeting
- Gene Transcription ★ Genome Mapping Glycobiology
- **★** Growth Factors and Receptors Haemopoiesis Histocompatibility Testing HIV Volumes 1 and 2
- ★ HPLC of Macromolecules (2nd edition) ·

Human Cytogenetics I and II (2nd edition)

Human Genetic Disease Analysis

- ★ Immunochemistry 1
- ★ Immunochemistry 2 Immunocytochemistry

★ In Situ Hybridization (2nd edition **Iodinated Density Gradient** Media

- Ion Channels ★ Light Microscopy (2nd edition) Lipid Modification of Proteins Lipoprotein Analysis Liposomes Mammalian Cell Biotechnology Medical Parasitology Medical Virology
- ★ MHC Volumes 1 and 2
- ★ Molecular Genetic Analysis of Populations (2nd edition) Molecular Genetics of Yeast Molecular Imaging in Neuroscience Molecular Neurobiology Molecular Plant Pathology I and II Molecular Virology Monitoring Neuronal Activity

Mutagenicity Testing

- ★ Mutation Detection Neural Cell Culture Neural Transplantation
- ★ Neurochemistry (2nd edition) Neuronal Cell Lines NMR of Biological Macromolecules Non-isotopic Methods in Molecular Biology Nucleic Acid Hybridization

Oligonucleotides and Analogues Oligonucleotide Synthesis PCR 1 PCR 2

PCR 2

★ PCR 3: PCR In Situ
 Hybridization
Peptide Antigens
Photosynthesis: Energy
 Transduction
Plant Cell Biology
Plant Cell Culture (2nd edition)
Plant Molecular Biology
Plasmids (2nd edition)

★ Platelets
 Postimplantation Mammalian Embryos
 Preparative Centrifugation
 Protein Blotting

★ Protein Function (2nd edition)

Protein Engineering

Protein Phosphorylation
Protein Purification
Applications
Protein Purification Methods
Protein Sequencing
Protein Structure
(2nd edition)
Protein Structure Prediction
Protein Targeting
Proteolytic Enzymes
Pulsed Field Gel

Electrophoresis
RNA Processing I and II
★ RNA:Protein Interactions

★ Signalling by Inositides
 Subcellular Fractionation
 Signal Transduction
 Transcription Factors
 Tumour Immunobiology

Preface

Recent years have seen a resurgence of interest in the structure and biology of RNA, witnessed by the formation in 1993 of the 'RNA Society' and the launch of its journal RNA. In part, this renewal has arisen from the realization that RNA, once thought of as a passive carrier of information (mRNA) or as a scaffold for proteins (rRNA), in fact harbours great diversity in structure and versatility in function. Similar to DNA both chemically and in its capacity as an information carrier, in its ability to adopt complex globular folds, and to mediate chemical reactions, RNA is more reminiscent of proteins. The appreciation of this point has led to a more 'ribocentric' view of processes such as pre-mRNA splicing in the spliceosome and peptide-bond formation in the ribosome, in which the snRNAs and rRNAs are thought to have the primary responsibility for catalysis. Nevertheless, RNA in the cell is always found in complex with proteins and even bona fide ribozymes such as RNase P and group II introns require protein cofactors for their function in vivo. Interest in RNA also stems from the fact that gene expression entails multiple steps that are mediated and regulated by RNA:protein interactions. These are mostly post-transcriptional—pre-mRNA splicing, polyadenylation, editing, transport, cytoplasmic targeting, translation, mRNA turnover—but some are even transcriptional, as illustrated by HIV Tat protein and λ N protein, which control different aspects of transcription. Indeed most stages of the life cycle of retroviruses such as HIV involve critical RNA:protein recognition events. The detection and characterization of RNA:protein interactions is therefore an important challenge facing many investigators. This book attempts to bring together a comprehensive assembly of the techniques currently used in studying RNA:protein interactions. The approaches covered range from those that would initially be used in detecting a protein that binds to a particular RNA site to those that would be used to analyse the interactions between pure RNA and protein in precise molecular detail. In choosing topics and authors for this volume I was particularly mindful of the previous volumes in this series: The ribosome and protein synthesis and RNA processing. Given that the ribosome and spliceosome are two of the major theatres of RNA:protein interactions, it is not surprising that these previous volumes contain many techniques applicable to general RNA:protein problems and both are still highly recommended. However, the expanding interest in various aspects of RNA:protein interactions has been accompanied by some major technical innovations. Happily, a number of the pioneers of these advances have agreed to describe them in this book. While the authors have drawn working examples from their own specialized systems, they have attempted to highlight the general principles and applicability of their techniques. In keeping with the traditions of the Practical Approach series the chapters are written in a clear explanatory style and are liberally peppered with protocols.

The first two chapters deal with large scale synthesis of RNA. Mike Gait and colleagues describe the current technology for automated chemical synthesis of oligoribonucleotides including incorporation of base-, sugar-, and phosphate-modified residues. They also describe a number of applications of chemically synthesized RNA, drawing upon their own experience with the HIV-1 Tat:TAR interaction. Kyoshi Nagai and Gabriele Varani's groups have been at the forefront of structural investigations of RNA:protein complexes using both X-ray crystallography and NMR. They detail methods for large scale enzymatic synthesis of RNA for these investigations including the use of internal ribozymes to guarantee homogeneity of product and also the production of isotopically labelled nucleotides for heteronuclear NMR. The chemical and enzymatic approaches are combined in the third chapter where Melissa Moore describes the oligonucleotide-mediated RNA ligation technique that she and Phil Sharp developed for synthesis of long sitespecifically modified RNAs. She and Charles Query detail applications of this technology for site-specific RNA:protein cross-linking. Doug Black and Leslie Bell have collaborated to produce a chapter on one of the 'workhorse' techniques for studying nucleic acid:protein interactions, the gel shift assay. They detail methods for using this assay with both crude cell extracts, including identification of components of gel shifted complexes, as well as more quantitatively with pure proteins. The following four chapters deal with a variety of strategies for isolating novel RNA binding proteins or their cDNAs. Richard Jackson, Nancy Standart, and colleagues detail the various affinity chromatographic methods that often provide the crucial final step in a protein purification strategy. Michael Rosbash and colleagues outline synthetic lethal genetic approaches that they have used to uncover interacting partners in the yeast spliceosome. Jeffrey Willusz writes about the 'Northwestern' method for directly screening expression libraries with a labelled RNA ligand as probe. Next, Marvin Wickens, Stan Fields, and colleagues describe their recent elaboration of the yeast 'two-hybrid' system into a 'three-hybrid' system capable of detecting RNA:protein interactions in vivo. This method already has a track record in the identification of novel RNA binding proteins and, as outlined in the chapter, it has a number of other potential applications. Harada and Frankel describe an in vivo selection system in E. coli that has been used to select optimal RNA binding polypeptides for a particular RNA ligand. The emphasis in this method has been to test combinatorial variants of known RNA binding proteins for improved or novel specificities. Merryman and Noller give details of various chemical probing methods that are used to map RNA:protein and RNA:RNA interactions, drawing upon their extensive experience of footprinting and modification interference assays in the ribosome. Jutta Rinke-Appel and Richard Brimacombe then detail sitespecific cross-linking methods that have been used to study RNA:RNA and

Preface

RNA:protein contacts in the ribosome, complementing the examples from the spliceosome given by Moore and Query. Finally, Andrew Ellington and colleagues describe the *in vitro* selection of nucleic acid ligands from large degenerate sequence pools (often referred to as SELEX). Many users of this book would be content to use this approach to define the optimal RNA binding site for confirmed RNA binding proteins. However, this chapter also outlines the more ambitious approach (100 ml PCR reactions!) of finding specific RNA partners, 'aptamers', for proteins that never knew that they could bind RNA. This is an area that is currently of intense interest as it promises the potential to develop RNA as a therapeutic tool.

I thank all of the authors for agreeing to contribute to this book, for their diligence, and for at times accepting suggestions for changes. I think their efforts have combined to produce a clear and up-to-date text that contains all the basic approaches as well as the cutting-edge techniques.

Cambridge July 1997

C. W. J. S.

LESLIE BELL

Molecular Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089–1340, USA.

SABINE BELL

Department of Chemistry, University of Indiana, Bloomington, IN 47405, USA.

DOUGLAS L. BLACK

Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.

RICHARD BRIMACOMBE

Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195-Berlin, Germany.

F. MAIKE BRÜCK

Department of Chemistry, University of Indiana, Bloomington, IN 47405, USA.

RAYMOND CHAN

Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.

RICHARD C. CONRAD

The Center for Aptamer Research, Indiana Molecular Biology Institute, and Department of Chemistry, University of Indiana, Bloomington, IN 47405, USA.

DAVID J. EARNSHAW

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

ANDREW D. ELLINGTON

The Center for Aptamer Research, Indiana Molecular Biology Institute, and Department of Chemistry, University of Indiana, Bloomington, IN 47405, USA.

MARK A. FARROW

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

STANLEY FIELDS

Departments of Genetics and Medicine, Markey Molecular Medicine Center, University of Washington, Box 357360, Seattle, WA 98195, USA.

JAN H. FOGG

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

ALAN D. FRANKEL

Department of Biochemistry and Biophysics, 513 Parnassus Avenue, University of California, San Francisco, CA 94143–0448, USA.

MICHAEL J. GAIT

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

RICHARD L. GRENFELL

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

KAZUO HARADA

Department of Biochemistry and Biophysics, 513 Parnassus Avenue, University of California, San Francisco, CA 94143–0448, USA.

RICHARD J. JACKSON

Department of Biochemistry, University of Cambridge, Old Addenbrookes Site, 80 Tennis Court Road, Cambridge CB2 1GA, UK.

ANN KAMINSKI

Department of Biochemistry, University of Cambridge, Old Addenbrookes Site, 80 Tennis Court Road, Cambridge CB2 1GA, UK.

BRIAN KRAEMER

Department of Biochemistry, 420 Henry Mall, University of Wisconsin, Madison, WI 53706, USA.

CHUCK MERRYMAN

Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA.

HOSUNG MIN

Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.

MELISSA J. MOORE

Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02254, USA.

KIYOSHI NAGAI

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

NIKOLAI A. NARYSHKIN

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

 $\mathbf{x}\mathbf{x}$

HARRY F. NOLLER

Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA.

DIRK H. OSTARECK

Gene Expression Program, EMBL, 1 Meyerhofstrasse, Heidelberg 69117, Germany.

CHRIS OUBRIDGE

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

STEPHEN R. PRICE

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

CHARLES C. OUERY

Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

JUTTA RINKE-APPEL

Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, 14195-Berlin, Germany.

MICHAEL ROSBASH

Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, MA 02254, USA.

DHRUBA SENGUPTA

Departments of Genetics and Medicine, Markey Molecular Medicine Center, University of Washington, Box 357360, Seattle, WA 98195, USA.

TERENCE V. SMITH

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

NANCY M. STANDART

Department of Biochemistry, University of Cambridge, Old Addenbrookes Site, 80 Tennis Court Road, Cambridge CB2 1GA, UK.

FRANCOISE STUTZ

Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, MA 02254, USA.

JIE TANG

Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, MA 02254, USA.

GABRIELE VARANI

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

JIWU WANG

Molecular Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089–1340, USA.

MARVIN WICKENS

Department of Biochemistry, 420 Henry Mall, University of Wisconsin, Madison, WI 53706, USA.

JEFFREY WILUSZ

Department of Microbiology and Molecular Genetics, UMDNJ—New Jersey Medical School, Newark, NJ 07103, USA.

BEILIN ZHANG

Department of Biochemistry, 420 Henry Mall, University of Wisconsin, Madison, WI 53706, USA.

Abbreviations

A₂₆₀ absorbance at 260 nm (or other specified wavelength)
ABG-NHS N-(p-azidobenzoyl)-glycine N-hydroxysuccinimide ester

acp³U 3-(3-amino-3-carboxy-propyl)-uridine

AMA methylamine:concentrated ammonium hydroxide (1:1)

AMV RTase avian myblastosis virus reverse transcriptase

APAB p-azido phenacyl bromide APS ammonium persulfate

BAPTD 3-[3-(bromoacetylamino)phenyl]-3-(trifluoromethyl)

diazirine

BIV bovine immunodeficiency virus

bp base pair

BSA bovine serum albumin

CAB-NHS ε-caproylamidobiotin-N-hydroxysuccinimide

CDI carbodiimide

cDNA complementary DNA

CMCT 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-

toluene sulfonate

CPG controlled pore glass support

c.p.m. counts per minute

CTAB cetyltrimethylammonium bromide

Da Dalton

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DCS downstream control sequence

ddH₂O double distilled water

ddNTP dideoxynucleotide triphosphate

DEAE diethylaminoethyl
DEPC diethyl pyrocarbonate
DMF N,N-dimethylformamide
DMFa dimethylformamidine
DMS dimethyl sulfate
DMSO dimethyl sulfoxide

DMSO dimethyl sulfoxide
DMTr dimethoxytrityl
DNase deoxyribonuclease

dNTP deoxynucleotide triphosphate dsRNA:DNA double-stranded RNA or DNA

DTNB 5,5'-dithio-bis(nitrobenzoic acid); Ellman's reagent

DTT dithiothreitol

EDITH 3-ethoxy-1,2,4-dithiazoline-5-one EDTA ethylenediaminetetraacetic acid

EF-G elongation factor-G (bacterial translation factor)

Abbreviations

EF-Tu elongation factor-Tu (bacterial translation factor) EGTA ethylenebis(oxyethylenenitrilo)tetraacetic acid

EMS ethylmethanesulfonate

EMSA electrophoretic mobility shift assay

FES filter elution solution FOA fluoro-orotic acid

Fpmp 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl

GST glutathione S-transferase

h hour(s)

Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HIV human immunodeficiency virus

hnRNP heterogeneous nuclear ribonucleoprotein particle

HPLC high-performance liquid chromatography

HRV human rhinovirus

IF-1,2,3 initiation factors 1, 2, and 3 (bacterial translation factors)

IgG immunoglobulin class G

IPTG isopropyl-β-D-thiogalactopyranoside

IRE iron-response element

IRP1 iron regulatory protein, iron-response protein

MALDI-TOF matrix-assisted laser desorption time-of-flight (mass

spectrometry)

Mes 4-morpholineethanesulfonic acid

min minute(s)
MUD mutant U1 die
NC nitrocellulose

NMP nucleotide monophosphate

nt nucleotide

NTP nucleotide triphosphate

ONPG o-nitrophenyl-β-D-galactopyranoside

ORF open reading frame PAB(P) open reading frame poly(A) binding protein

PAGE polyacrylamide gel electrophoresis

PBS phosphate-buffered saline PCR polymerase chain reaction

pcv packed cell volume PEG polyethylene glycol

PMSF phenylmethylsulfonyl fluoride

PNK polynucleotide kinase

PTB polypyrimidine tract binding protein

PVP polyvinyl pyrrolidone RBD RNA binding domain

RNase ribonuclease

rNMP nucleotide monophosphate

RNP ribonucleoprotein

Abbreviations

rNTP nucleotide triphosphate RRE rev-response element RRM RNA recognition motif

RT-PCR reverse transcription followed by polymerase chain reaction

S Svedberg

SDS sodium dodecyl sulfate

sec second(s)

SELEX systematic evolution of ligands by exponential enrichment

snRNP small nuclear ribonucleoprotein particle

ssRNA:DNA single-stranded RNA or DNA TAR trans-activation response element

TB Tris, borate buffer

TBDMS t-butyldimethylsilyl group
TBE buffer Tris, borate, EDTA buffer

TCA trichloroacetic acid

TDB 4-trifluoromethyl diazirino-benzoyl N-hydroxysuccinimide

ester

TE Tris-HCl, EDTA buffer triethylamine trihydrofluoride triethylammonium acetate tetraethylmethylenediamine

TFA trifluoroacetic acid tetrahydrofuran

U2AF U2 snRNP auxiliary factor

UV ultraviolet

YPD/YEPD yeast extract, peptone, glucose (dextrose)

YPG/YEPG yeast extract, peptone, glycerol

X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactoside

YFG 'your favourite gene'

Contents

Lis	st of contributors	xix
Abbreviations		xxiii
1.	Applications of chemically synthesized RNA	1
	Michael J. Gait, David J. Earnshaw, Mark A. Farrow, Jan H. Fogg, Richard L. Grenfell, Nikolai A. Naryshkin, and Terence V. Smith	
	Basic methods of synthesis and purification of oligoribonucleotides Introduction Assembly of oligoribonucleotides Deprotection of oligoribonucleotides Purification of oligoribonucleotides	1 1 2 5 8
	2. Incorporation of modified ribonucleotides Base analogues Ribose analogues Phosphate analogues	12 12 15 16
	3. Analysis of oligoribonucleotides and analogues Capillary electrophoresis MALDI-TOF mass spectrometry Analysis of oligoribonucleotides by enzymatic digestion and reversed-phase HPLC	18 18 20 21
	4. Synthetic RNA duplex models for HIV-1 Tat protein interaction Competition gel retardation assays Interference filter binding assays	23 23 27
	Cross-linking of peptides and proteins to modified synthetic RNA	29
	Acknowledgements	33
	References	33
2.	Preparation of RNA:protein complexes for X-ray crystallography and NMR	37
	Stephen R. Price, Chris Oubridge, Gabriele Varani, and Kiyoshi Nagai	
	1. Introduction	37