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Preface

The technological value of computational fluid dynamics has become undis-
puted. A capability has been established to compute flows that can be in-
vestigated experimentally only at reduced Reynolds numbers, or at greater
cost, or not at all, such as the flow around a space vehicle at re-entry, or
a loss-of-coolant accident in a nuclear reactor. Furthermore, modern com-
putational fluid dynamics has become indispensable for design optimization,
because many different configurations can be investigated at acceptable cost
and in short time. A distinguishing feature of the present state of computa-
tional fluid dynamics is, that large commercial computational fluid dynamics
computer codes have arisen, and found widespread use in industry. The days
that a great majority of code users were also code developers are gone. This
attests to the importance and a certain degree of maturity of computational
fluid dynamics as an engineering tool. At the same time, this creates a need
to go back to basics, and to disseminate the basic principles to a wider audi-
ence. It has been observed on numerous occasions, that even simple flows are
not correctly predicted by advanced computational fluid dynamics codes, if
used without sufficient insight in both the numerics and the physics involved.
The present book aims to elucidate the principles of computational fluid dy-
namics. With a variation on Lamb’s preface to his classic Hydrodynamics,
owing to the elaborate nature of some of the methods of computational fluid
dynamics, it has not always been possible to fit an adequate account of them
into the frame of this book.

When technology progresses from the pre-competitive to the competitive
stage, unavoidably, something like an information stop sets in. To protect
investments, and because of the relatively long learning curve to be traversed
in order to become familiar with a large computer code, a certain sluggishness
of change makes itself felt. These consequences of the widespread distribu-
tion of large computational fluid dynamics codes needs to be counteracted
by the dynamics of unencumbered scientific enquiry, not to pursue change
for change’s sake, but because much improvement seems feasible. Therefore
I hope the book will be helpful not only to users of computational dynamics
codes, but also to researchers in the field.
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The book has grown out of graduate courses for doctoral students and prac-
ticing engineers, held under the auspices of the J.M. Burgers Center, the
national inter-university graduate school for fluid dynamics in The Nether-
lands. I expect teachers of advanced courses of computational fluid dynamics
courses will find this a useful book. For an introductory course the book.
seems too advanced, but I have found selected material from the manuscript
useful in teaching an introductory undergraduate course.

Other relatively recent introductions to the subject of computational fluid
dynamics that the reader will find useful are Ferziger and Perié¢ (1996),
Fletcher (1988), Hirsch (1988), Hirsch (1990), Peyret and Taylor (1985),
Roache (1998a), Shyy (1994), Sod (1985), Tannehill, Anderson, and Pletcher
(1997), Versteeg and Malalasekera (1995), Wendt (1996). The two volumes by
Hirsch give an éspecially wide coverage. The present book differs from these
works in the following respects. More mathematical and numerical analy-
sis is given, but the mathematical background of the reader is assumed not
to go beyond what physicists and engineers are generally familiar with. The
maximum principle for differential equations and numerical schemes gets gen-
erous attention, in order to put discussions of spurious ‘wiggles’, accuracy of
schemes on nonuniform grids, and accuracy of numerical boundary condi-
tions on a firm footing. Singular perturbation theory is introduced to predict
qualitative features of the flow, to which numerical methods can be adapted
for better accuracy and efficiency. In particular, singular perturbation the-
ory is used with a fair amount of rigor to demonstrate convincingly how it
is possible to achieve accuracy and computing cost uniform in the Reynolds
number, showing that a ‘numerical windtunnel’ that operates at arbitrarily
high Reynolds number is feasible, notwithstanding the effect of ‘numerical
viscosity’. Much attention is given to the principles and the application of
von Neumann stability analysis, giving useful stability conditions, some of
them new, for many schemes used in practice. Godunov’s order barrier and
how to overcome it by slope-limited schemes is discussed extensively. The
theory of scalar conservation laws including the nonconvex case is treated.
Distributive iteration is used as a unifying framework for describing itera-
tive methods for the incompressible Navier-Stokes equations. The principles
of Krylov subspace and multigrid methods for efficient solution of the large
sparse algebraic systems that arise are introduced. Much attention is given to
the complications brought about by geometric complexity of the flow domain,
including an introduction to tensor analysis. A chapter on unified methods to
compute incompressible and compressible flows is included. In order to help
the reader along who wants to delve deeper and to quickly reach the current
research frontier, references to more advanced literature are provided.

Errata and MATLAB software related to a number of examples discussed in
the book my be obtained via the author’s website, to be found at
ta.twi.tudelft.nl/nw/users/wesseling



Combining the writing of a textbook of this size with the daily tasks of a
university professor was not always easy, and would have been impossible
without the support of the numerical team, and in particular our secretary
Tatiana Tijanova. Her dedication, love of perfection and capability to cope
with repeated stress were of vital importance for keeping the manuscript or-
ganized, and finally bringing it into publishable form. I am indebted to dr.
C. Vuik for advice on Chap. 7, to professor G.S. Stelling for checking up on
Chap. 8, and to professor F.T.M. Nieuwstadt for casting a critical eye on
what I wrote about turbulence. The enthusiasm of the students in the grad-
uate courses on computational fluid dynamics of the J.M. Burgers Center,
and the cooperation with my fellow teacher professor A.E.P. Veldman, were
inspiring and stimulating. The moral support of my wife Tineke was and re-
mains invaluable.

Delft, June 2000 P. Wesseling
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1. The basic equations of fluid dynamics

1.1 Introduction

Fluid dynamics is a classic discipline. The physical principles governing the
flow of simple fluids and gases, such as water and air, have been understood
since the times of Newton. Sect. IX of the second book of Newton’s Principia
starts with what came to be known as the Newtonian stress hypothesis :
“The resistance arising from the want of lubricity in the parts of a fluid, is,
other things being equal, proportional to the velocity with which the parts of
the fluid are separated from another”. This hypothesis is followed by Propo-
sition LI, in which the flow generated by a rotating cylinder in an unbounded
medium is considered. The period of the orbit of a fluid particle is found to
be proportional to the distance r from the cylinder axis. This is not correct.
The source of the error is that the master balances force instead of torque;
this may be of some consolation to beginning students who find mechan-
ics difficult. The closing remark “All of this can be tested in deep stagnant
water” must be taken with a grain of salt. Newton was more interested in
celestial mechanics than in fluid dynamics. His aim was to test Descartes’s
vortex theory of planetary motion, which would gain credibility if the pe-
riod of the orbit of a particle in this flow would be proportional to r3/2; in
fact, it is proportional to r2. The mathematical formulation of the laws that
govern the dynamics of fluids has been complete for a century and a half.
In the nineteenth century and the beginning of the twentieth, eminent scien-
tists and engineers were drawn to the subject, and gave it clarity, unification
and elegance, as exemplified in the classic work of Lamb (1945), that first
appeared in 1879. In the preface to the 1932 edition Lamb writes, that the
subject has in recent years received considerable developments, classic fluid
dynamics having a widening field of practical applications. This has remained
true ever since, especially because in the last forty years or so classic fluid
dynamics finds itself in the company of computational fluid dynamics. This
new discipline still lacks the elegance and unification of its classic counter-
part, and is in a state of rapid development, so that we can do no more than
give a glimpse of its current status. But first, we take a look at classic fluid
dynamics.
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Continuum hypothesis

The dynamics of fluids is governed by the conservation laws of classical
physics, namely conservation of mass, momentum and energy. From these
laws partial differential equations are derived and, under appropriate cir-
cumstances, simplified. It is customary to formulate the conservation laws
under the assumption that the fluid is a continuous medium (continuum hy-
pothesis). Physical properties of the flow, such as density and velocity can
then be described as time-dependent scalar or vector fields on R3, for exam-
ple p(t, #) and u(t, z).

For the flowing medium we restrict ourselves here to gases and liquids. More
general media, such as mixtures of gases and liquids (multiphase flows), will
not be considered. For a liquid the continuum hypothesis is always satis-
fied in practice. A gas satisfies the continuum hypothesis (to a sufficient
degree) if K « 1, with K the Knudsen number, defined as K = A/L, with
A the mean free path and L the length scale of the low phenomenon under
study. Consider for example flow over a flat plate with free-stream velocity
V (Fig. 1.1). It is known that at the plate a boundary layer is generated, in

-
-

“"‘
——— P L
-
~
— \\\ 8

Fig. 1.1. Flow over a flat plate

which the velocity changes from zero to V. The thickness § of this bound-
ary layer is the relevant length scale. If the fluid is air at room temperature
then A = 0.4 pm. With V = 1 m/s, experiment and boundary layer theory
tell us that § = 2.5 cm at 0.5 m downstream of the leading edge, so that
here K = 0.16 x 10~*. Hence, at this location momentum exchange due to
friction takes place over a length scale of about 60,000 mean free paths, and
the continuum hypothesis is very well satisfied. Perhaps this would not be so
quite near the leading edge of an extremely sharp flat plate, but that need
not concern us here. We will throughout assume the continuum hypothesis,
and the flowing medium, be it gas or liquid, will often be called the fluid. The
most common situation in technology where the continuum hypothesis has
to be abandoned is the flow of very rarefied gases. Such a flow regime occurs
at a certain stage of atmospheric re-entry of space vehicles. Unexpectedly
perhaps, for flows of the interstellar medium often K « 1, because of the size
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of the galactic length scale, so that the continuum hypothesis can be safely
applied there.

Lagrangean and Eulerian formulation

The continuum hypothesis enables us to speak of the properties of a flow at
a point in space, and of the physical properties of an infinitesimally small
volume element of the fluid, to which we shall refer for brevity as a material
particle . A flow can be described exhaustively by specification of the physical
properties of each material particle as a function of time. This kind of speci-
fication of a flow is called the Lagrangean formulation, Alternatively, a flow
may be described by specification of the time history of the flow properties at
every fixed point of the domain. This is called the Eulerian formulation. The
second formulation is usually more accessible for analysis and computation
than the first, but sometimes the Lagrangean formulation may be preferable,
for example when fluid interfaces have to be tracked. In most cases we ask
for flow properties at fixed locations, such as the pressure at a wall, and this
information is provided directly by the Eulerian formulation, to which we will
adhere throughout this book. The Eulerian and Lagrangean points of view
meet in the transport theorem, to be discussed in Sect. 1.3.

Selection of topics

The reader is assumed to be familiar with the principles of fluid dynamics,
of vector analysis, of numerical linear algebra and of the numerical analysis
of partial differential equations.

Fluid dynamics is a vast discipline, utilizing many different mathematical
models. As the Mach number M (to be introduced later) varies, we encounter
incompressible (M « 1), subsonic (0 < M < 1), transonic (M = 1), super-
sonic (M > 1) and hypersonic (M > 1) flow. In hypersonic flow, chemical
processes taking place in the fluid have to be accounted for, giving rise to
the discipline of aerothermochemistry. Multiphase flows play a large role in
chemical engineering and reservoir engineering. Flows in porous media are
governed by the Darcy equations. In hydraulic engineering the shallow-water
equations are predominant. In ship hydrodynamics the free surface (water-air
interface) often has to be accounted for. Capillary forces may be important.
As the Reynolds number (to be introduced shortly) increases, transition from
laminar to turbulent flow occurs, giving rise to a plethora of more or less
semni-empirical turbulence models. Rotation causes special effects, important
in oceanography, and in atmospheric and planetary fluid dynamics. We have
made a selection of topics. The book is focussed on the incompressible and

compressible Navier-Stokes equations, restricting ourselves to M < 2, thus
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catering mainly to the needs of industrial and environmental fluid dynamics
and aeronautics. We will also pay attention to the shallow-water equations.
Fortunately, many of the underlying principles carry over to cases not treated.
In particular, a thorough understanding of the analytical and computational
aspects of the comparatively simple convection-diffusion equation gives valu-
able insight in more complex models. Therefore this equation will receive
much attention.

Although most practical flows are turbulent, we restrict ourselves here to
laminar flow, because this book is on numerics only. Turbulence modeling is
a vast subject in itself, that is briefly discussed in Sect. 1.13, where pointers
to the literature are given for further study. The numerical principles uncov-
ered for the laminar case carry over to the turbulent case. To facilitate this,
viscosity is usually assumed variable.

Fluid dynamics is governed by partial differential equations. These may be
solved numerically by finite difference, finite volume, finite element and spec-
tral methods. In engineering applications, finite difference and finite volume
methods are predominant. In order to limit the scope of this work, we will
confine ourselves to finite difference and finite volume methods.

Since in computational fluid dynamics mathematical modeling aspects in-
variably play an important role, we devote the remainder of this chapter to a
thorough derivation of the basic equations of fluid dynamics and their main
simplifications. Of course, the subject cannot be adequately reviewed in a
single chapter. For a more extensive treatment, see Batchelor (1967), Chorin
and Marsden (1979), Kreiss and Lorenz (1989), Lamb (1945), Landau and
Lifshitz (1959), Sedov (1971), Zucrow and Hoffman (1976), Zucrow and Hoff-
man (1977). A brief introduction to the history of the subject, with references
to further literature, is given by Eberle, Rizzi, and Hirschel (1992).

Good starting points for exploration of the Internet for material related to
computational fluid dynamics are the following websites:
www.cfd-online.com/
www.princeton.edu/"gasdyn/fluids.html
and the ERCOFTAC (European Research Community on Flow, Turbulence
and Combustion) site:
imhefwww.epfl. ch/ERCOFTAC/

Readers well-versed in fluid dynamics may skip the remainder of this chapter,
perhaps after taking note of the notation introduced in the next section. But
those less familiar with this discipline will find it useful to continue with the
present chapter.
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1.2 Vector analysis

Cartesian tensor notation

The basic equations will be derived in a right-handed Cartesian coordi-
nate system (zi,z3z,...,z4) with d the number of space dimensions. Bold-
faced lower case Latin letters denote vectors, for example, 2 = (z,, 2, ..., Z4).
Greek letters denote scalars. In Cartesian tensor notation, which we shall of-
ten use, differentiation is denoted as follows:

b0 = 04/0z. .

Greek subscripts refer to coordinate directions, and the summation conven-
tion is used: summation takes place over Greek indices that occur twice in a
term or product, for example:

d d
UaVa = Z UaVq ¢,aa = Zazq&/&zﬁ v

a=1 a=1

We will also use vector notation, instead of the subscript notation just ex-
plained, and may write divu, if this is more elegant or convenient than
the tensor equivalent u, .; and sometimes we write grad ¢ for the vector

(¢.19 ¢,21 ¢,3)'

Divergence theorem

We need the following fundamental theorem:

Theorem 1.2.1. For any volume V C R? with piecewise smooth closed sur-
face S and any differentiable scalar field ¢ we have

/ badV = / $nads |
v S

where n is the outward unit normal on S.

For a proof, see for example Aris (1962).

A direct consequence of this theorem is:

Theorem 1.2.2. (Divergence theorem).
For any volume V C R? with piecewise smooth closed surface S and any
differentiable vector field u we have

/divudV:/u-ndS,
1% 5

where n s the outward unit normal on S.



