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Engineering is not merely knowing and being knowledgeable, like a walking encyclopaedia; engineering
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non-existent engineering problems; engineering is practicing the art of the organized forcing of
technological change.

Dean Gordon Brown
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UNIT OVERVIEW

# Basic design analysis

@ Stress, strain and elasticity
# Beam bending

¥ Multiaxial stress and strain
= Torsion

% w

1.1 Basic design analysis
Forces, moments and couples

[ A force'é{rises from the action (or reaction) of one body on another.

Although a force cannot be directly observed, its effect can be. A typical example is a force
arising from the surface contact between two bodies, e.g. one pushing against the other. Two
forces actually occur in this situation as shown in Figure 1.1. One 1s the ‘action’ of the man on
the wall and the other is the ‘reaction’ of the wall on the man.

| Newt(}h"-s third law tells us that the action and réacticn forces in this
~ situation (and generally) are equal and opposite.

Wall Equal and opposite

‘reaction’ of wall
on man

| -—
Action’ of

man on
wall

Figure 1.1 Newton’s third law
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Such contact forces occur where bodies interact with each other; however, they can also occur
internally within a single body. In this case, it is the microscopic particles, e.g. molecules, atoms,
etc. which contact each other and interact with forces between themselves. For this chapter, we
will generally be dealing with macroscopic bodies where the interaction forces occur at
external surface contacts.

Another type of force occurring is that which arises from the remote influence of one body on
another, such as the force of gravity. The Earth’s gravity acting on a person gives rise to a force
acting at his or her centre of mass. This type of force is termed the person’s weight and acts
vertically downwards or towards the centre of the Earth. Magnetic attraction is another example
of a remote (or non-contact) force arising from the influence of a magnetic field on a body.

| The Sl unit of force is the newton (N).

A force of 1 N is that force which, when applied to a mass of 1 kg, will result in an acceleration of
the mass of 1 m s~ 2. Thus, in general, a force applied to a body tends to change the state of rest or
motion of the body, and the relationship between the resulting motion (acceleration, a) and the
applied force, F, is given by Newton’s second law, i.e. ' = ma where m is the mass of the body.
However, in this chapter, we will generally be concerned with bodies in equilibrium, where there
1s no motion, 1.¢. static situations. For this to be the case, all forces acting on the body must
balance each other out so that there is no resultant force (see the next section on ‘equilibrium’).

A force has both a magnitude and a direction and is therefore a vector quantity which F
can be represented by an arrow as shown in Figure 1.2. The magnitude of the force is

represented by a label, e.g. 5 N as shown, or, alternatively, when solving problems 5N

graphically, by the length of the arrow. The direction of the force is clearly represented
by the orientation of the arrow in space such as the angle 0 to the x-direction.

0

Figure 1.2 Force as a vector

Thus, when considering problems in two dimensions, two scalar quantities are required
to describe a force, i.e. its magnitude and direction — in the above case 5 N and 6° y
respectively. To aid the analysis of systems with several forces, the forces are often F,=Fsin® .

resolved into their components in two perpendicular directions, as shown in Figure 1.3

| X
|
for the force F. The x- and y-directions are commonly chosen, although resolving in |
' g . !
other (perpendicular) directions relevant to the boundaries of a body may be more :

. . . . |
convenient fc?r ;1lspcuﬁc grolj.cm. Erom Flggrc l.lj) the magnitudes of the two 'E =F cos 0
“omponents in the x- and y-direc ' 2 " :
comg > X- and y-directions are given by Figure 1.3 Resolving the force

F.= Fcos 0 vector into components
F,= Fsin 0 (1.1)

With this representation there are still two scalar quantities describing the force, in this case,
Fyand F,.

g ; W
. The moment of a force about a point is equal to the product of the magnitude of the
{ force and the perpendicular distance from the point to the line of action of the force.

This is illustrated in Figure 1.4, where the moment, M, of force F, about point O, is given by:
M= Fd (1.2} /

An example of a device which creates a moment is a spanner, also shown in Figure 1.4.
The hand applies the force, F, at one end and imparts a moment, M = Id, on the nut at

the other end, O.

A couple is a special case of a moment of a force and arises from a pair of equal and

opposite parallel forces acting on a body but not through the same point, as shown in

Figure 1.5.If the two forces, I, act at a distance d apart, then the magnitude of couple C,
about any point, is given by: =

Figure 1.4 Moment of a
G= Fd ﬁ «3§ force applied by a spanner
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As the two forces, F, in Figure 1.5, are equal and opposite, their sum is zero and the body
on which they act is not translated. However, they do create a couple which tends to rotate
the body. Therefore, a consequence of a couple acting on a body is to impart pure rotation.
For this reason, the term ‘pure moment’ 1s often used instead of ‘couple’.

An example of a device which creates a couple 1s a wheel nut wrench, also shown in
Figure 1.5. Here, the hands apply forces, F in and out of the page at both ends of one arm
of the wrench, imparting a turning couple on a locked nut at O.

When a couple or moment is applied at a point on a body its effect 1s ‘felt’ at all other
points within the body. This can be illustrated with the cantilever beam shown in Figure
1.6 where a couple of 5 kN m is applied at end A. If we assume that the couple 1s created
by the application of two equal and opposite 5 kN forces, 1 m apart, acting through a rigid
bar attached to the beam at A, we can determine the influence that these forces also have at
points B and C, at 5 m and 10 m from A respectively.

Taleing moments ahout B: Moment/couple of 5kNm felt at both

Mp=5kN.5m+ 0.5m) —5kN.(5m— 0.5m) B and C and all points along the beam
=275—225=5kNm

1m

Taking moments about C:
M =5kN.(10m + 0.5m) — 5kN.(10 m— 0.5 m)

D E i )
=525—475=5kNm \;A : L
In both cases the effect, i.c.a 5kN m turning ~ SkN
moment, 1s felt at B and C. In other words, ' 5m ' Bt
the turning moment felt on the bar is Figure 1.6 Influence of a moment or couple
independent of the distance from A. acting at a point

Conditions of equilibrium

For a body to be in equilibrium, it must not translate or rotate. Considering movement in one
plane only (i.e. a two-dimensional system), this means the body must not move in the x- or
y-directions or rotate about its position. Three conditions are required of the applied forces for
this to be the case.

These three conditions of equilibrium are: ?
() the sum of all the acting forces in the x-direction must be zero, i.e. 2F, =0. |
(i) The sum of all the acting forces in the _y«direc;tion must be zero, i.e. 3F,=0. 3

|
i
|
| . .
% (i) The sum of all the moments about any point must be zero.

Resultants of forces

When a number of forces act at a point on a body, their resultant force can be determined
either algebraically or graphically.

The algebraic method for determining the resultant of a number of forces has the following steps:
(1) Resolve all forces into their x- and y-components.

(i) Sum the x-components (XF,) and the y-components (EF},).

(iii) Determine the magnitude and direction of the resultant force from %F, and 21’),._

The following example illustrates the method.

Figure 1.7 shows three forces Fa, I3 and F acting at a point A. Determine the magnitude and
direction of the resultant force at A.

F

Figure 1.5 Couple and
wheel nut wrench (forces
act in and out of page)
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The components of the forces are,
Fa, =0 Fyy = 4N
l““.‘. = —8 kN 1‘-“), = ;
Fry = —600560° = —3kN  Fp, = —63i060° = —5.196 kN
Summing these components in the x- and y-directions,
SF,.=0—8—-3=—11kN
2F,=4+0 + —5.196 = —1.196 kN
(note the —ve values indicating that the resultant forces act in the —ve x and —ve y directions)

The magnitude, Iy, of the resultant of X F, and 21"), is,

By =VEE)? + Q5)
=V(=11)2 + (—1.196)
= 11.064 kN

The angle, 0 (with respect to the x-axis), of the resultant force 1s,

2 F
= tan ! el ]
RER (21-‘.\-)

» —1.1‘)6)
" e
an _11

= 6.2° to the negative x-direction as shown in Figure 1.7.

FA:"“(N

ll.l‘)(}kN

Fp=8kN Y '
- A
Fy=11.064kN

60° X

Fo=6kN

Figure 1.7 Resultant of a number of forces acting at a point

The procedure for the graphical method of determining the resultant of a number of forces 1s
shown 1n Figure 1.8 for the problem given above.

I“Bzka

Firstly, draw to scale each of the three vector forces, Fy, Fy3 and F.,
following on from each other, as shown in the figure. The resultant Fo=6kN Fa=4kN
force, Iy, 1s the single vector force that joins the start point A to the

e : . 2 A
finishing point B, 1.e. that closes the polygon of forces. Its magnitude
and direction (8) may be measured off from the scale vector diagram. B Fpr=11.064kN
(NB: it does not matter in which order the three vectors are drawn in Figure 1.8 Resultant of forces acting at a point

the diagram.) - graphical method

The graphical method 1s useful to give a quick approximate solution, whereas the algebraic
method normally takes longer but will yield an exact result.
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Frictional forces

Consider a solid body, i.e. a block, weight IV, resting on the ground but in equilibrium under
the action of an applied force, Fa, as shown in Figure 1.9. In general, where the body contacts
the ground there will be a reaction force (from the ground) acting on the body. This reaction
force has two components as follows:

(1) a tangential force, F, termed the friction force;

(1) a normal force, N.

As the body is in equilibrium, these two components of the reaction force
counterbalance the applied force, Fy, and the weight of the body, W, to — " G
prevent any movement. (NB: the body’s weight 1s given by 1ts mass X the I
acceleration of gravity, 1.e. Mg and acts at the centre of mass.)

The frictional force, F, exists because of the rough nature of the contact # I

surface between the body and the ground. In some cases, where the N

contact is smooth or lubricated, the frictional force will be negligible and Figure 1.9 Frictional force (F) and normal force
there will be a normal reaction force only. This is a special case only found  (N) at point of contact between a block and the
under certain circumstances, e.g. contact surfaces in a lubricated bearing. ground

If the applied force, Fy, is slowly increased, the frictional component, F, will also mncrease to
maintain equilibrium. At some point the applied force will become sufficiently large to overcome
the frictional force and cause movement of the body. Up to this point of ‘slip” between the
surfaces, a relationship exists between the frictional force and the normal reaction force as follows:

F<uN (1.4)

Note the ‘less than or equal to’ sign indicates that a limiting condition can occur. This limiting

condition is the point of slip, at which point F = pwN. Thus, the maximum value of F, i.e. the

limiting frictional force, is proportional to N. The constant of proportionality, p, is termed the

coeflicient of static friction and its value depends on the roughness of the two contacting

surfaces and hence the contacting materials. Typical values are in the range 0.1 — 1.0, where a

lower value indicates a smoother surface and reduced friction.Values outside this range can

occur for some material contact surfaces e.g. lubricated surfaces can have values lower than 0.1

while stick=slip surfaces, such as rubber on a hard surface, can have values in the range 1-10.

A number of important observations can now be stated about the frictional force, F:

(1) F cannot exceed wN;

(11) the direction of I always opposes the direction in which subsequent motion would take
place if slip occurred;

(111) the magnitude of I is independent of the size of the contact area between the contacting
surfaces;

(1v) 1f slip does occur, the magnitude of F 1s independent of the velocity of sliding between the
two contact surfaces.

Although in this chapter we will be concerned primarily with static friction up to the point of
slip, if slip does occur, the coefficient of dynamic friction (also called the kinetic frictional
‘coethicient, ) 1s usually marginally lower than the coefficient of static friction. In the sliding
(1.e.slipping) condition the limiting form of equation (1.4) sull applies, i.e. FF'= p,N.

Free body diagrams

To analyse the forces in more complex systems, such as assemblies of components or structures
containing many different elements, it is normal to break down the problem into separate free

bodies.

Figure 1.10 shows two bodies, body A positioned on top of body B which itself 1s located on
the ground. To analyse this problem for forces, we separate the two bodies and draw on each all
the external forces acting as shown in the figure. The aim is to solve for the unknown reaction
forces between the two bodies and between body B and the ground.
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Thus, for body A, the external forces are its weight, W, acting at its centre of mass
(W = Mu.g) and the vertical reaction force, Ry, from body B. There is no horizontal
friction force at the contact between the bodies because there are no horizontal forces
acting. '

For body B, there is also its weight, W}, = Mj;.g, again acting at its centre of mass, the
action force, Ry, acting downwards from A and the reaction force, R;, acting upwards
from the ground.

Newton'’s third law tells us that Ry = Ry, 1.¢. ‘for every action there 1s an equal and
opposite reaction’.

We can now look at the equilibrium of each body 1n turn:
For body A, EF), =0 S Ry = Wy

and for body B 217), =0 SR =Rpa+ Wy=Ry+ W= W, + Wy

[t 1s no surprise that the reaction force at the ground is equal to the sum of the weights
of the two bodies. This is necessary to maintain the system in equilibrium.

Although this 15 a simple problem, it clearly illustrates the value of separating the two
bodies, allowing us to solve for the unknown reaction force between the bodies. The
diagrams of each separate body are referred to as freebody diagrams (FBDs).

Key points about free body diagrams:

i) A free body diagram, as the name implies, is a diagram of a free body which shows
all the external forces acting on the body.

(i) Where several bodies (or subcomponents) interact as part of a more complex

system, each body should be drawn separately, and interacting bodies should be
replaced at their contact points with suitable reaction forces and/or moments.

o

General design principles

I Wy

[

Figure 1.10 Free body diagrams

A number of general principles related to force analysis can be applied in design to simplify

problems. In this section we will consider several of these principles.

A force can be moved along its line of action without affecting the static equilibrium of the
body on which it acts. This principle of transmissibility 1s illustrated in Figure 1.11 where the
equilibrium of the body is the same whether it 1s subjected to a pushing force or a pulling

force acting along the same line of action. It should be pointed out that, although static

equilibrium 1s the same in each case, the internal forces within the body will be different.

F _ = F
Push a Pull

Figure 1.11 Principle of transmissibility

A load system can be replaced by another one, provided the static behaviour of the body on

which they act is the same. Such load systems are termed statically equivalent.

Figure 1.12 shows a number of loads (five in total) each of 5 kN acting on a beam structure in
such a way as to be evenly distributed along the length of the beam. If we are not interested in
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the internal forces developed within the beam but only the equilibrium of the beam Body A
as a whole, then this loading system can be replaced by a simpler point load of 25 kN
applied at the centre of the beam. The two load systems are statically equivalent

and the equilibrium conditions for the beam will apply, whichever of the loading
systems 1s assumed.

5kN 5kN 5kN 5kN 5kN 25kN

R T T S

1
A

I

Not in equilibrium

2

Figure 1.12 Statically equivalent Body B

Iy

The two-force principle states that, for a two-force body (i.e. a body with forces
applied at two points only) to be in equilibrium, both forces must act along the
same line of action.

L . il

This 1s illustrated in Figure 1.13 where Body A is subjected to two forces, F; and
F5, not acting along the same line of action. Taking moments about point A, the
< < l.',)

application point for F, it is clear that there is a resultant moment and the body - Z
In equilibrium

cannot be in equilibrium. For it to be in equilibrium, the distance d must be zero. . ) o
(providing magnitude of F;=F>)

This 1s the case for Body B, where F; and I, act along the same line and cannot

therefore generate a moment. In addition, F; must equal F,. . o
Figure 1.13 Two-force principle

Body A

The three-force principle states that for a three-force body (i.e. a body
with forces applied at three points only) to be in equilibrium, the lines of action
of these forces must pass through a common point.

S R i 2 g

This is illustrated in Figure 1.14 where Body A is subjected to three forces, I}, I,
and F; not acting along the same line of action. Taking moments about point O, Kot i sl
where the lines of action of F; and F> meet, it is clear that there is a resultant ©
moment arising from F; and the body cannot be in equilibrium. For it to be in

equilibrium, the distance d must be zero. This is the case for Body B, where the Bodv B
lines of action of Fj, I, and F; meet at O and there cannot be a resulting moment. ‘

In addition, the vector sum of F;, I, and F; must be zero.

Pin-jointed structures

A pin-jointed structure, as shown 1n Figure 1.15, comprises an assembly of several
members, which are joined together by frictionless pin joints. Such a joint cannot
transmit moments due to the free rotation of the pin. This simplification is found in
practice to be valid for many structures and enables the analysis of forces within the
structure to be significantly simplified. The objective is usually to determine the

In cquilibriun%

forces occurring at each of the pin joints in the structure, and this is achieved by (providing the vecear zl“(]‘i):o)

considering equilibrium of individual members and the structure as a whole. 0
A solution can be obtained algebraically or graphically. Figure 1.14 Three-force principle
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P

Figure 1.15 A pin-jointed structure

Consider a wall bracket comprising a simple two-bar pin-jointed structure,
ABC, as shown in Figure 1.16. Both members are of equal length and
inclined to the horizontal at 45°. The joints at A, B and C are all pin joints,
and the lower member, BC, is subjected to a vertical downward load, P,
acting half way along its length. The weights of the members may be
ignored. The aim is to determine the forces at A, B and C in terms of the

applied load P.

The first stage is to draw the freebody diagrams for the two members, also
shown in Figure 1.16.

Member AB is a two-force member as forces act only at the two ends of the
member. For equilibrium of a two-force member, the directions of the
forces, Ry and Ry, must be along the same line, i.e. along the axis of the
member. As AB is clearly in tension, the directions are as indicated n the
figure. Note that for some problems it may not be possible to establish on
simple inspection whether a member is in tension or compression. This 1s
not a problem, because if the forces are drawn incorrectly, say in
compression rather than tension, the analysis will, in that case, result in a
negative magnitudes for the forces.

Moving to member BC, this is a three-force member with forces acting at
both ends and the third force, P, acting at the centre of the member. The
three-force principle could be used for this member to establish the
directions of the forces; however, we will not do so, as we are solving the
problem algebraically.

Ry acting on BC at joint B must be equal and opposite to Ry acting on AB
at joint B (Newton’s third law). As we do not know the direction of the
force at C, we will give it two unknown components, H¢- and V¢, as shown
in Figure 1.16. Now looking at the equilibrium of BC:

horizontal forces Hi — Ry cos45° =0
. H.=0.707 Ry
vertical forces Ve — P+ Ry sind5° =0
V(: = 1) = 0.707 R“

L
moments about C P.(;).cos45° = Ry lh =1

s I{B = 0.354P
and Ry = Ry = 0.354P
Both R, and Ry act at 45° to the horizontal, i.e. along the line of AB.

Substituting for R; into (1.5) and (1.6) gives,
H-=0.25Pand V= 0.75P

Figure 1.1% Pin-jointed
structure - algebraic solution



