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Foreword to the first
edition

The last few decades have seen three important developments in nonlinear classical physics, all of
which extend across the board of physical disciplines. They have, however, received uneven
coverage in the literature.

Perhaps the best known outburst of activity is associated with the soliton, and the most
famous development here is the inverse scattering method which has been with us now for over
twenty years. There are, however, several other, less known methods for treating solitons. Indeed
these compact, single hump wave entities have been known to scientists for over a century and a
half (it might be interesting to look through some old ships’ log books!). Nevertheless, books on
the subject tend to concentrate on the inverse scattering method.

The second much publicized development is a new understanding of some deterministic
aspects of chaos as well as the various roads a physical system can take to reach a chaotic state.
Established views are being revised and new concepts and indeed even universal constants are
being found. These important new developments derive from a realization that complex chaotic
behaviour can be described by simple equations. The field has now reached the stage where a
summary of basic theory can be given, though applications to specific physical problems are
largely at the research stage.

The third development is somewhat less well publicized. Over the last three decades or so,
scientists working on fluid dynamics and plasma and solid state theory have developed a
multitude of new methods to deal with nonlinear waves. Some of these people were aware of the
shortcomings of our linear physics education even before the above-mentioned two develop-
ments brought them to the attention of the scientific community.

We believe that, although there are now a number of books on al three topics, the time has
come to try to bring them together in one volume. Thus the present book documents the three
important developments in classical physics jointly, and, when possible, points out the similari-
ties of approach. -

The authors’ research interest over the past twenty years has been in fluid dynamics and
plasma theory and this is reflected in the book. However, the main aim is to covera wider range of
nonlinear wave phenomena than hitherto. A few examples of what is done are: treatment of both
surface and volume wave phenomena, including recent results (e.g. instabilities and their pictorial
representation, wavelength doubling, wave dynamics in three dimensions, splitting of signals
observed experimentally, the universal theory of wave envelope dynamics); new developments in

xi



xii Foreword

soliton studies (e.g. many soliton experiments in rectangular, cylindrical and spherical devices
and their theory); and a bringing together of theoretical and numerical results on various
scenarios for reaching chaos. An example of what is not attempted is a coverage (or even mention)
of the 100 or so instabilities found in plasmas and fluids. Instead we present the basic physics of a
few of them, each representing a whole category in some sense. Thus, all in all, the ambition of the
book could be summarized by the adage ‘not many but much’. Some unsolved problems are
indicated. References are extensive and exercises are given at the end of each chapter. Thus the
more ambitious reader should be able to get into the field. On the other hand, little knowledge is
assumed, thus also giving the general science graduate (or senior undergraduate), who would like
to learn what these new developments are about, a chance to do so.

As one of us is based in Warsaw, an attempt has been made to do some justice to research
performed in Poland and the Soviet Union.

The authors would like to thank Drs P. Frycz, P. Goldstein, T. Lenkowska, K. Murawski
and L. Starkman for critical reading of the manuscript, and Professors P.N. Butcher*, J.P.
Dougherty, A. Kuszell*, E. Kuznetsov, R. Raczka*, A.A. Skorupski, K.N. Stepanov and R.
Zelazny for remarks on parts of the text. Additional thanks are due to Dr Frycz for preparation
the material used in Sections 7.10 and A.l1 and Figs. 9.2 and 9.3. We would also like to
acknowledge a huge debt to Ms H. Gilder for typing the manuscript several times over. Finally,
Cambridge University Press in the person of Dr S. Capelin has been both helpful and patient.

E. Infeld and G. Rowlands
Warwick

* Now deceased.



Foreword to the second
edition

When this book was first published in 1990, it became more popular than we expected. A book
clubchose it as its Book of the Month. It was reprinted in 1992. Eight years have now gone by and
we feel it is time for a proper revision. New results and references have been added. On the other
hand, some chapters remain largely as they were, since we feel that the presentation of the basic
ideas to be found there remains valid. Chapter 11 (Chapter 10 in the first edition) on chaotic
phenomena is an example of this.

The only criticism anyone made to our faces was that we leaned too heavily on plasma
physics and hydrodynamics for examples, whereas most phenomena and methods we consider
have wider applications. These include optics, biology, solid state physics and other fields. This
shortcoming has now been rectified to a certain extent. Also, a new chapter on soliton metamor-
phosis, including some colour plates, has been added (Chapter 10).

However, much of the text has been left as it was. Thus ‘recent’ should be read as recent in
1990. Some printing errors have been corrected. Once again, Dr Simon Capelin of the Cambridge
University Press has been patient and helpful. Ms Lenkowska-Czerwinska spent a large portion
of her time in Warwick helping us organize our material.

E. Infeld and G. Rowlands
Warwick
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Introduction

1.1 Occurrence of nonlinear waves and
instabilities in Nature

This book is concerned with the propagation of waves and instabilities both linear and nonlinear,
but concentrating on the latter.

The main advances in this subject have quite naturally come from studies involving fluids
and more recently plasmas. The latter primarily because of the possibility of ‘cheap, unlimited’
{and hopefully safe) power from thermonuclear reactions. Everyone is of course familiar with
waves on water if only being aware of the many instances where they provide examples of natural
beauty. It is not so obvious that very similar waves can exist in a plasma which, to a good
approximation, is usually a very dilute assembly of ions and electrons. We shall see later in this
chapter that this is indeed so and fluids and plasmas have much in common. However, plasmas
also show a much wider range of phenomena basically because they are composed of two or more
components and also can be made strongly anisotropic by the introduction of magnetic fields,
something that is not possible for simple fluids. This richer variety of phenomena has also been a
reason why plasmas have had more than their share of attention.

The above remarks notwithstanding, there are numerous media other than plasmas and
fluids which can support waves and/or propagate instabilities. As we will see, some of these are
more intrigning than others.

1.1.1 Nonlinear phenomena in our‘ovoryday experience

As most of us are aware, waves generated by the wind can propagate across a field of corn. In this
case the microscopic model is that of the ears moving, due to the stalk bending, in an harmonic
manner, and ear interacting with adjacent ear only when in contact (a hard sphere potential). On
amacroscopic level the corn can be considered as a dense fluid and now with the moving air flow
over it one has the classic situation of a Kelvin—-Helmholtz instability (Chapter 4).

The wind drives the instability and the stalks of corn bend in an analogous manner to how
water waves are formed on lakes by the wind. The nonlinear requirement is different, in that if the
bending of the stalk is too great it will break and produce a permanent record of the wave.
Kelvin-Helmholtz type instabilities occur in plasma physics and they have been controlled to a

1



Introduction

Figure 1.1 Two examples of herring-bone cloud formation. (After R. Scorer, Clouds of
the world, Lothian, Melbourne (1972).)
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certain extent by introducing perpendicular periodicities. The intriguing question naturally arises
if similar conditions would stabilize the motion of corn heads and stop the breaking of the stalks.
By analogy this could be done by planting trees periodically spaced in a line (or lines) perpendicu-
lar to the usual direction of the wind. Another example where Nature leaves a permanent record
of a surface wave instability (at least until diffusion processes slowly remove it) is the so-called
herring-bone cloud formation. Here the sky is broken up into alternate bands of cloud (high
density of moisture regions) and apparently clear regions (low density regions). The moisture in
this case is responsible for the permanent record, two layers of air moving relative to each other
giving rise to the Kelvin-Helmholtz instability (Chapter 4) and subsequent nonlinear effects
(Fig. 1.1).

Television coverage of soccer matches usually shows, incidentally, the swaying of the crowd.
This is seen as a wave moving through the stadium. Unfortunately, in some circumstances this
wave can build up and those near the barriers can get crushed.

Lighthill and Whitham (1955) and Richards (1956) have considered the flow of cars (discrete
objects) in a fluid context and explained phenomena such as the effects of traffic lights in terms of
the propagation of waves and, in particular, shocks.

The conclusion to be reached from these quite disparate examples is that they can be
effectively studied in terms of the propagation of waves and instabilities, leading to nonlinear
effects, in continuous media. If the natural wavelength is large compared to the underlying
microscopic length, the above picture should be applicable.

1.1.2 Nonlinear phenomena in the laboratory

Waves in solids have received considerable attention both at the microscopic (atomic) and the
macroscopic (continuous) level. The most interesting phenomenon concerning the propagation
of disturbances in solids at a microscopic level is the effect of anisotropies and non-homogeneities
in the media. Until recently, nonlinear effects in solids have received little attention, as the energy
needed to produce them is very large. However, with the advent of intense power sources such as
lasers it has been possible to show that the flow of heat in solids is closely refated to the flow of
solitons. The basic relationships between soliton amplitude, width and velocity have been verified
in this context (Section 1.2 and, in some detail, Chapters 5 and 7).

At the microscopic level it is usually necessary to quantize the system and instead of talking
about sound waves one talks about phonons. However, because of the lattice periodicity the
phonons have a dispersive nature. Most interesting phenomena, such as thermal conductivity,
depend on phonon-phonon interaction. Until recently, such interaction has been studied in what
could be called weakly nonlinear theories. However, a major breakthrough was made when it was
realized that a number of phenomena could best be explained by introducing solitons as
elementary excitations. Then it was found that a statistical mechanics based on weakly interact-
ing solitons and phonons gave better results than previous theories which attempted to consider
phonon-phonon interaction outside the control of a weak interaction.

Many years ago, Fermi, Ulam and Pasta (1965), though the actual work was performed
much earlier and published in a Los Alamos report in 1955, studied numerically the problem ol
the strong interaction of phonons. They found, somewhat perplexingly at that time, that the
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Figure 1.2 Evolution of an initially periodic profile, cosnx, as given by the
Korteweg—de Vries equation (1.2.8). The breaking time for the wave profile (when the
third term is neglected) is t5. From Zabusky and Kruskal (1965). After a while, patterns
roughly repeat themselves.

phonons did not come to thermal equilibrium, but rather they underwent nearly periodic
variations. See Weissert (1998).

Much later Zabusky and Kruskal (1965) showed that this was the correct behaviour and
could be explained in terms of solitons in a space periodic medium, Fig. 1.2. (A name given to
reflect their quantal nature.) Nowadays people realize that solitons are not necessary to explain
this phenomenon (Thyagaraja (1983)) Chapter 5. A theory that relies on the interaction of a small
number of periodic modes also exists, see Infeld (1981c). Solitons are special wave pulses which
interact with one another so as to keep their basic identity and so that they act as particles. Now
the soliton has come of age in its mother subject, though in the meantime promising to be a useful
concept in many other branches of physics, most of them being well out of the range of quantum
effects. One of the first detailed experimental verifications of soliton type behaviour was in the
study of nonlinear ion acoustic waves.

Davydov (1978), (1985) has applied some of the rules of solid state physics to the transport of
energy down protein chains. He assumed that the idea of soliton propagation is relevant to a
study of chemical changes taking place in long protein molecules. This leads to the transfer of
ATP (adenosine triphosphate) and could be the basis for an understanding of muscle contraction.
However, Davydov’s theory is one-dimensional, whereas proteins are three-dimensional. Also,
his mechanism for energy transport has been criticized. Zorski and Infeld (1997) approach
protein dynamics by using a quadrilateral chip model. The dynamics were described by continu-
um equations in three dimensions. They obtained a helical structure and demonstrated stability.
Solitons do appear in special cases, but have limited importance in their theory. Thus, the role of
soliton dynamics in understanding protein chains still seems to be an open question.

The motion of electrons in solids is surprisingly well understood in terms of a simple Drude
picture where the current J is linearly related to the electric field E by J = (net/m)E. Here nis the
electron density, e its charge, and 7 the mean free time. The effective mass ‘m’ takes into account
the presence of the periodic nature of atomic structure. Normally all the quantities are constants
and we simply have Ohm’s law. However, it can happen, particularly in semiconductors, that if E
is large enough the electron can be excited to a higher band which can have a different value of m.
Thus the conductivity o = ne?t/m) is dependent on E and Ohm’s law is no longer linear. If the
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mass is larger in the higher band, then an increase in E causes a decrease in J and thus we have a
negative differential resistance. Obviously this is an instability mechanism and such a mechanism
is observed in GaAs (gallium arsenide). The instability itself leads to the propagation of nonlinear
stable pulses called Gunn domains, analogues to a soliton. These have been observed and are in
fact the bases of many modern day oscillators. See Butcher (1967) for a review of Gunn domains;
and Butcher and Rowlands (1968) for a study of the stability of the domain.

Another instability, leading to the propagation of nonlinear pulses that are also kinsmen of
solitons and have been studied in the general area of solid state physics, is that associated with the
acousto-electric effect. Here the instability mechanism arises because of a piezo-electric coupling
between the propagation of sound waves and the flow of electrons. A nonlinear pulse can
propagate down a crystal, for example of CdS or ZnO, but reach such an amplitude as to cause
permanent distortion to the crystal. For a brief account of the general theory and for a dxscusslon
of the instability and nonlinear effects see Pawlik and Rowlands (1975).

It took a long time for it to be accepted that a homogeneous mixture of chemicals could lead
to a periodic time variation in the concentration of a particular chemical or to an inhomogeneous
spatial separation of the chemicals. Turing demonstrated that nonlinear chemical reactions
together with diffusion could lead to a spatial separation of the chemicals and explored the idea.in
connection with the theory of morphogenesis, the formation of life. Zhabotinsky (1964) and later
Zhabotinsky and Belousov found experimentally that a homogeneous mixture of certain chemi-
cals could lead to a time periodic variation of the colour of the mixture. Later experiments
showed that the same mechanism could lead to spatial colour patterns. All these phenomena can
be explained in terms of nonlinear waves in time and space that have the inherent stability of a
soliton.

In this revised version of the book we will look at nonlinear phenomena in new contexts,
such as laser theory and biology. Waves following from discrete equations are also a novelty, as
are illustrations of soliton metamorphosis (solitons are a kind of compact wave, about which
more in Subsection 1.2).

1.2 Universal wave equations

It has now been realized that the study of many different types of waves in numerous media can
often be based on a few universal nonlinear equations. These replace the usual linear wave
equations, such as

62
—-Vjo=0
1.21 The Korteweg-de Vries and Kadomtsev-Petviashvili equations and a first

look at solitons

Most classical media propagate longitudinal plane waves at or near a characteristic velocity ¢
(acoustic-type waves). These waves are, for very small amplitude, given by
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u=acoskk-x — wt), (1.2.1)

where o is taken to be a function of k, the form of which is dictated by the medium. When this
medium is isotropic, we expect w to depend on the modulus k only. All acoustic waves are such
that, for small k,

w? = c2k? + -, (122

where c is the velocity of sound or another velocity specific to the medium. Thus long-wave
acoustic modes propagate with little or no dispersion and the signal (group) velocity dw/dk is
almost equal to the phase velocity c:

0w

O ok~ 2k = ck™?

pro wk ™%k = ck™'k. (1.2.3)
However, dispersion will come in for k other than very small and it is perhaps more natural for
the signal to lag behind the phase. This stipulation and symmetry suggest that the simplest
possible correction to (1.2.2) is a negative quartic term in k:

w? = c2k? — pk*. (1.24)

We have arrived at a very general small k dispersion relation. It covers all isotropic media that'
propagate acoustic modes such that the signal lags behind the phase. For the moment we will
consider one space dimension, returning to general k later on. If we follow a wave propagating
from left to right (admittedly thus losing some generality) we have

o = ck — (B22c)k3 + ---. (1.2.5)

We can look at the wave behaviour in a coordinate system moving with velocity ¢ and
renormalize lengths so as to get rid of the %/2¢ coefficient. Thus, in the new system,

w* = — k3, (1.2.6)
corresponding to the following differential equation for w:

ou u
+

prir iy (127

This equation has several drawbacks. For one, it is not Galilean-invariant (this is partly due to
our choice of coordinate system). It also leads to spreading of all finite extent initial profiles #(x,0)
(dispersion). However, if we replace the first term by the more general convective derivative, we
remove both these shortcomings. Thus we suggest
3

%+ug§+%=0 ' (1.2.8)
as a more adequate equation. This is known as the Korteweg-de Vries (KdV)equation (1895) and
will be derived rigorously in two physical contexts in Chapter 5 (water surface gravity waves and
ion acoustic waves in a plasma). Some subsequent developments are reviewed by Miura (1976)
and Miles (1981). However, it is already seen here to be the simplest possible unidirectional wave
equation including dispersion and nonlinearity, but not dissipation. This allows us to hope for a
stationary, pulse-like solution to exist if the nonlinearity, leading to wave steepening, can just



