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Preface to Books 2 and 3

Books 2 and 3 correspond to Chap. V-IX of the first edition. They study
schemes and complex manifolds, two notions that generalise in different di-
rections the varieties in projective space studied in Book 1. Introducing them
leads also to new results in the theory of projective varieties. For example, it
is within the framework of the theory of schemes and abstract varieties that
we find the natural proof of the adjunction formula for the genus of a curve,
which we have already stated and applied in Chap. IV, 2.3. The theory of
complex analytic manifolds leads to the study of the topology of projective
varieties over the field of complex numbers. For some questions it is only
here that the natural and historical logic of the subject can be reasserted;
for example, differential forms were constructed in order to be integrated, a
process which only makes sense for varieties over the (real or) complex fields.

Changes from the First Edition

As in the Book 1, there are a number of additions to the text, of which the
following two are the most important. The first of these is a discussion of the
notion of the algebraic variety classifying algebraic or geometric objects of
some type. As an example we work out the theory of the Hilbert polynomial
and the Hilbert scheme. I am very grateful to V. I. Danilov for a series of
recommendations on this subject. In particular the proof of Chap. VI, 4.3,
Theorem 3 is due to him. The second addition is the definition and basic
properties of a Kéhler metric, and a description (without proof) of Hodge’s
theorem.

Prerequisites

Varieties in projective space will provide us with the main supply of examples,
and the theoretical apparatus of Book 1 will be used, but by no means all of
it. Different sections use different parts, and there is no point in giving exact
indications. References to the Appendix are to the Algebraic Appendix at
the end of Book 1.

Prerequisites for the reader of Books 2 and 3 are as follows: for. Book 2,
the same as for Book 1; for Book 3, the definition of differentiable manifold,



VI Preface to Books 2 and 3

the basic theory of analytic functions of a complex variable, and a knowledge
of homology, cohomology and differential forms (knowledge of the proofs is
not essential); for Chap. IX, familiarity with the notion of fundamental group
and the universal cover. References for these topics are given in the text.

Suggestions for Further Reading

Some references for further reading are included in the text. The reader who
would like to continue the study of algebraic geometry is recommended the
following books.

For scheme theory, the cohomology of algebraic coherent sheaves and its
applications, see: Hartshorne [35], especially Chap. III.

For the Riemann-Roch theorem. An elementary proof for curves is given
in the book: W. Fulton, Algebraic curves, Springer.

For the general case, see any of the following:

A. Borel and J.-P. Serre, Le théoréme de Riemann-Roch, Bull. Soc. Math.
France, 86 (1958), 97-136. Or

Yu. 1. Manin, Lectures on the K-functor in algebraic geometry, Uspekhi
Mat. Nauk 24:5 (1969), 3-86. English translation in: Russian Math. Surveys,
24:5 (1969), 1-89. Or

W. Fulton and S. Lang, Riemann-Roch algebra, Springer, 1985.
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Chapter V. Schemes

In this chapter, we return to the starting point of all our study - the notion of
algebraic variety ~ and attempt to look at it from a more general and invariant
point of view. On the one hand, this leads to new ideas and methods that
turn out to be exceptionally fertile even for the study of the quasiprojective
varieties we have worked with up to now. On the other, we arrive in this way
at a generalisation of this notion that vastly extends the range of application
of algebraic geometry.

What prompts the desire to reconsider the definition of algebraic variety
from scratch? Recalling how affine, projective and quasiprojective varieties
were defined, we see that in the final analysis, they are all defined by systems
of equations. One and the same variety can of course be given by different
equations, and it is precisely the wish to get away from the fortuitous choice
of the defining equations and the embedding into an ambient space that leads
to the notion of isomorphism of varieties. Put like this, the framework of basic
notions of algebraic geometry is reminiscent of the theory of finite field ex-
tensions at the time when everything was stated in terms of polynomials: the
basic object was an equation and the idea of independence of the fortuitous
choice of the equation was discussed in terms of the “Tschirnhaus transform-
ation”. In field theory, the invariant treatment of the basic notion considers
8 finite field extension k C K, which, although it can be represented in the
form K = k(6) with f(6) = 0 (for a separable extension), reflects properties
of the equation f = 0 invariant under the Tschirnhaus transformation. As
another parallel, one can point to the notion of manifold in topology, which
was still defined right up to the work of Poincaré as a subset of Euclidean
space, before its invariant definition as a particular case of the general notion
of topological space.

The nub of this chapter and the next will be the formulation and study of
the “abstract” notion of algebraic variety, independent of a concrete realisa-
tion. This idea thus plays the role in algebraic geometry of finite extensions
in field theory or of the notion of topological space in topology.

The route by which we arrive at such a definition is based on two observa-
tions concerning the definition of quasiprojective varieties. In the first place,
the basic notions (for example, regular map) are defined for quasiprojective
varieties starting from their covers by affine open sets. Secondly, all the prop-
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erties of an afline variety X are reflected in the ring k[X], which is associated
with it in an invariant way. These arguments suggest that the general notion
of algebraic variety should in some sense reduce to that of affine variety; and
that in defining affine varieties, one should start from rings of some special
type, and define the variety as a geometric object associated with the ring.

It is not hard to carry out this program: in Chap. I we studied in detail
how properties of an affine variety X are reflected in its coordinate ring k[ X,
and this allows us to construct a definition of the variety X starting from some
ring, which turns out after the event to be k{X]. However, proceeding in this
way, we can get much more than the invariant definition of an affine algebraic
variety. The point is that the coordinate ring of an affine variety is a very
special ring: it is an algebra over a field, is finitely generated over it, and has
no nilpotent elements. However, as soon as we have worked out a definition of
affine variety based on some ring A satisfying these three conditions, the idea
arises of replacing A in this definition by a completely arbitrary commutative
ring. We thus arrive at a far-reaching generalisation of affine varieties. Since
the general definition of algebraic variety reduces to that of an affine variety,
it also is the subject of the same degree of generalisation. The general notion
which we arrive at in this way is called a scheme.

The notion of scheme embraces a circle of objects incomparably wider
than just algebraic varieties. One can point to two reasons why this generali-
sation has turned out to be exceptionally useful both for “classical” algebraic
geometry and for other domains. First of all, the rings appearing in the def-
inition of affine scheme are not now restricted to algebras over a field. For
example, this ring may be a ring such as the ring of integers Z, the ring of
integers in an algebraic number field, or the polynomial ring Z{T]. Introduc-
ing these objects allows us to apply the theory of schemes to number theory,
and provides the best currently known paths for using geometric intuition in
questions of number theory. Secondly, the rings appearing in the definition
of affine scheme may now contain nilpotent elements. Using these schemes
allows us, for example, to apply in algebraic geometry the notions of differen-
tial geometry related with infinitesimal movements of points or subvarieties
Y C X, even when X and Y are quasiprojective varieties. And we should
not forget that, as a particular case of schemes, we get the invariant defini-
tion of algebraic varieties which, as we will see, is much more convenient in
applications, even when it does not lead to any more general notion.

Since we expect that the reader already has sufficient mastery of the
technical material, we drop the usual “from the particular to the general”
style of our book. Chap. V introduces the general notion of scheme and proves
its simplest properties. In Chap. VI we define “abstract algebraic varieties”,
which we simply call varieties. After this, we give a number of examples to
show how the notions and ideas introduced in this chapter allow us to solve
a number of concrete questions that have already occurred repeatedly in the
theory of quasiprojective varieties.



1. The Spec of a Ring 5
1. The Spec of a Ring

1.1. Definition of Spec A

We start out on the program sketched in the introduction. We consider a ring
A, always assumed to be commutative with 1, but otherwise arbitrary. We
attempt to associate with A a geometric object, which, in the case that A is
the coordinate ring of an affine variety X, should take us back to X. This
object will at first only be defined as a set, but we will subsequently give it a
number of other structures, for example a topology, which should justify its
claim to be geometric.

The very first definition requires some preliminary explanations. Consider
varieties defined over an algebraically closed field. If we want to recover an
affine variety X starting from its coordinate ring k[X], it would be most
natural to use the relation between subvarieties Y C X and their ideals
ay C k[X]. In particular a point z € X corresponds to a maximal ideal
mg, and it is easy to check that z — m; C k[X] establishes a one-to-one
correspondence between points z € X and the maximal ideals of k[X]. Hence
it would seem natural that the geometric object associated with any ring A
should be its set of maximal ideals. This set is called the mazimal spectrum
of A and denoted by m-Spec A. However, in the degree of generality in which
we are now considering the problem, the map A +— m-Spec A has certain
disadvantages, one of which we now discuss.

It is obviously natural to expect that the map sending A4 to its geometric
set should have the main properties that relate the coordinate ring of an
affine algebraic variety with the variety itself. Of these properties, the most
important is that homomorphisms of rings correspond to regular maps of
varieties. Is there a natural way of associating with a ring homomorphism
f: A — B a map of m-Spec B to m-Spec A? How in general does one send
an ideal b C B to some ideal b C A? There is obviously only one reasonable
answer, to take the inverse image f~1(b). But the trouble is that the inverse
image of a maximal ideal is not always maximal. For example, if A is a ring
with no zerodivisors that is not a field, and f: A < K an inclusion of 4 into
a field, then the zero ideal (0) in K is the maximal ideal of K, but its inverse
image is the zero ideal (0) in A, which is not maximal.

This trouble does not occur if instead of maximal ideals we consider prime
ideals: it is elementary to check that the inverse image of a prime ideal under
any ring homomorphism is again prime. In the case that A = k[X] is the
coordinate ring of an affine variety X, the set of prime ideals of A has a
clear geometric meaning: it is the set of irreducible closed subvarieties of X
(points, irreducible curves, irreducible surfaces, and so on). Finally, for a very
large class of rings the set of prime ideals is determined by the set of maximal
ideals (see Ex. 8). All of this motivates the following definition.
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Definition. The set of prime ideals of A is called its prime spectrum or
simply spectrum, and denoted by Spec A. Prime ideals are called points of

Spec A.

Since we only consider rings with a 1, the ring itself is not counted as
a prime ideal. This is in order that the quotient ring A/P by a prime ideal
should always be an integral domain, that is, a subring of a field (with 0 # 1).
Every nonzero ring A has at least one maximal ideal. This follows from Zorn’s
lemma (see for example Atiyah and Macdonald [7], Theorem 1.3); thus Spec A
is always nonempty for A # 0.

We have already discussed the geometric meaning of Spec A when 4 =
k[X] is the coordinate ring of an affine variety. We consider some other ex-
amples.

Ezample 1. SpecZ consists of the prime ideals (2), (3), (5), (7), (11), ...,
and the zero ideal (0).

Ezample 2. Let O, be the local ring of a point z of an irreducible algebraic
curve. Then Spec O, consists of two points, the maximal ideal and the zero
ideal.

Consider a ring homomorphism ¢: A — B. In what follows we always
consider only homomorphisms that take 1 € A into 1 € B. As we remarked
above, the inverse image of any prime ideal of B is a prime ideal of A. Sending
a prime ideal of B into its inverse image thus defines a map

%p: Spec B — Spec A,

called the associated map of .
As a useful exercise, the reader might like to think through the map
Spec(C[T]) — Spec(R[T]) associated with the inclusion R[T} < C[T).

Ezample 3. We consider the ring Z{i] with i = 1, and try to imagine its
prime spectrum Spec(Z[i]), using the inclusion map ¢: Z — Z[i]. This defines
a map

%p: Spec(Z[i]) — SpecZ.

We write w = (0) € SpecZ and w’ = (0) € Spec(Z[i]) for the points of
Spec Z and Spec(Z|i]) corresponding to the zero ideals. Obviously (W) =w
and (%)~ ({w}) = {'}.

The other points of Spec Z correspond to the prime numbers. By defini-
tion, (*¢)~1({(p)}) is the set of prime ideals of Z[i] that divide p. As is well
known, all such ideals are principal, and there are two of them if P = 1mod4,
and only one if p = 2 or p = 3mod 4. All of this can be pictured as in Fig-
ure 22.



1. The Spec of a Ring 7

(2+i) {3-2i)
Spec ZIil —,
g e
S 7z —o O -0 i, S —_—
Pt D @ ® M an @

Figure 22. °p: Spec(Z][i]) — SpecZ

We recommend the reader to work out the more complicated example of
Spec(Z[T}), using the inclusion Z — Z(T].

Ezample 4. Recall that a subset S C A is a multiplicative set if it contains
1 and is closed under multiplication. For every multiplicative set, we can
construct a ring of fractions Ag consisting of pairs (a,s) with a € A and
s € S, identified according to the rule

(a,8) = (a’,8") <= 33" €S such that s"(as’ —a's) =0.
Algebraic operations are defined by the rules
(a,8) + (a',8') = (as’ + a's, s5'),
(a,s)(d’,8') = (ad’, 35').
The reader will find a more detailed description of this construction in Atiyah
and Macdonald {7], Chap. 3. From now on we write a/s for the pair (a, 8).
In particular, if S is the set A\ p, where p is a prime ideal of A then Ag
coincides with the local ring A, of A at a prime ideal (compare Chap. II,

1.1).
There is a map ¢: A — Ag defined by a — (a,1), and hence a map

%p: Spec(As) — Spec A.

The reader can easily check that ®*¢ is an inclusion, and that its image
%p(Spec(As)) = Us is the set of prime ideals of A disjoint from S. The
inverse map 1: Us — Spec(Ag) is of the form

Y(p) =pAs ={z/s|z €pand s€ S}.

In particular, if f € Aand § = {f* | n =0,1,...} then Ag is denoted by
Ay,
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1.2. Properties of Points of Spec A

We can associate with each point x € Spec A the field of fractions of the
quotient ring by the corresponding prime ideal. This field is called the residue
field at z and denoted by k{z). Thus we have 2 homomorphism

A - Kkz),

whose kernel is the prime ideal we are denoting by z. We write f(z) for the
image of f € A under this homomorphism. If A = k[X] is the coordinate
ring of an affine variety X defined over an algebraically closed field k then
k(z) = k, and for f € A the element f(z) € k(z) defined above is the value
of f at x. In the general case each element f € A also defines a “function”

z+— f(z) € k(z)

on Spec A, but with the peculiarity that at different points z, it takes values
in different sets. For example, when A = Z, we can view any integer as a
“function”, whose value at (p) is an element of the field F, = Z/(p), and at
(0) is an element of the rational number field Q.

We now come up against one of the most serious points at which the “clas-
sical” geometric intuition turns out to be inapplicable in our more general
situation. The point is that an element f € A is not always uniquely de-
termined by the corresponding function on Spec A. For example, an element
corresponds to the zero function if and only if it is contained in all prime
ideals of A. These elements are very simple to characterise.

Proposition. An element f € A is contained in every prime ideal of A if
and only if it is nilpotent (that is, f™ = 0 for some n).

Proof. See Appendix,' §6, Proposition 2 or Atiyah and Macdonald [7), Propo-
sition 1.8.

Thus the inapplicability of the “functional” point of view in the general
case is related to the presence of nilpotents in the ring. The set of all nilpotent
elements of a ring A is an ideal, the nilradical of A.

For each point z € Spec A there is a local ring O, the local ring of A4 at
the prime ideal z. For example, if A = Z and z = (p) with p a prime number,
then O, is the ring of rational numbers a/b with denominator b coprime to
p; if z = (0) then O, = Q.

This invariant of a point of Spec A allows us to extend to our general
case a whole series of new geometric notions. For example, the definition of
nonsingular points of a variety was related to purely algebraic properties of
their local rings (Chap. I, 1.3). This prompts the following definition.

! Appendix refers to the Algebraic Appendix at the end of Book 1.



