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Préface

Attention: Starting with the 12th printing, this book has been set
in KX so that the book will be more readable. In particular, there
is less material on each page, so there are more pages. However,
these are the only changes from previous printings except that I've
updated the bibliography.

Preface to the First Edition

A study of this book, and especially the exercises, should give the
reader a thorough understanding of a few basic concepts in analysis
such as continuity, convergence of sequences and series of numbers,
and convergence of sequences and series of functions. An ability
to read and write proofs will be stressed. A precise knowledge of
definitions is essential. The beginner should memorize them; such
memorization will help lead to understanding.

Chapter 1 sets the-scene and, except for the completeness axiom,
should be more or less familiar. Accordingly, readers and instructors
are urged to move quickly through this chapter and refer back to it
when necessary. The most critical sections in the book are Sections7
through 12 in Chapter 2. If these sections are thoroughly digested
and understood, the remainder of the book should be smooth sailing,

v



Vimeace

The first four chapters form a unit for a short course on analysis.
1 cover these four chapters (except for the optional sections and
Section 20) in about 38 class periods; this includes time for quizzes
and examinations. For such a short course, my philosophy is that the
students are relatively comfortable with derivatives and integrals but
do not really understand sequences and series, much less sequences
and series of functions, so Chapters 1-4 focus on these topics. On two
or three occasions I draw on the Fundamental Theorem of Calculus
or the Mean Value Theorem, which appear later in the book, but of
course these important theorems are at least discussed in a standard
calculus class. ,

In the early sections, especially in Chapter 2, the proofs are very
detailed with careful references for even the most elementary facts.
Most sophisticated readers find excessive details and references a
hindrance (they break the flow of the proof and tend to obscure the
main ideas) and would prefer to check the items mentally as they
proceed. Accordingly, in later chapters the proofs will be somewhat
less detailed, and references for the simplest facts will often be omit-
ted. This should help prepare the reader for more advanced books
which frequently give very brief arguments.

Mastery of the basic concepts in this book should make the
analysis in such areas as complex variables, differential equations,
numerical analysis, and statistics more meaningful. The book can
also serve as a foundation for an in-depth study of real analysis
given in books such as [2], [25], [26], [33], [36], and [38] listed in the
bibliography.

Readers planning to teach calculus will also benefit from a careful
study of analysis. Even after studying this book (or writing it) it will
not be easy to handle questions such as “What is a number?”, but at
least this book should help give a clearer picture of the subtleties to
which such questions lead.

The optional sections contain discussions of some topics that I
think are important or interesting. Sometimes the topic is dealt with
lightly, and suggestions for further reading are given. Though these
sections are not particularly designed for classroom use, I hope that
some readers will use them to broaden their horizons and see how
this material fits in the general scheme of things.



Preface to the First Edition Vll

I have benefitted from numerous helpful suggestions from my
colleagues Robert Freeman, William Kantor, Richard Koch, and John
Leahy, and from Timothy Hall, Gimli Khazad, and Jorge Lopez. I
have also had helpful conversations with my wife Lynn concerning
grammar and taste. Of course, remaining errors in grammar and
mathematics are the responsibility of the author.

Several users have supplied me with corrections and suggestions
that I've incorporated in subsequent printings. I thank them all, in-
cluding Robert Messer of Albion College who caught a subtle error
in the proof of Theorem 12.1.

Kenneth A. Ross
Eugene, Oregon
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Introduction

CHAPTER

The underlying space for all the analysis in this book is the set of
real numbers. In this chapter we set down some basic properties of
this set. These properties will serve as our axioms in the sense that
it is possible to derive all the properties of the real numbers using
only these axioms. However, we will avoid getting bogged down in
this endeavor. Some readers may wish to refer to the appendix on
set notation.

§1 The Set N of Natural Numbers

We denote the set {1, 2, 3, ...} of all natural numbers by N. Elements
of N will also be called positive integers. Each natural number n has
a successor, namely n+ 1. Thus the successor of 2 is 3, and 37 is the
successor of 36. You will probably agree that the following properties
of N are obvious; at least the first four are.

N1. 1 belongs to N.
N2, Iif n belongs to N, then its successor n + 1 belongs to N.
N3. 1 is not the successor of any element in N,
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N4. If n and m in N have the same successor, then n = m.
N5. A subset of N which contains 1, and which contains n + 1
whenever it contains n, must equal N.

Properties N1 through N5 are known as the Peano Axioms or
Peano Postulates. It turns out that most familiar properties of N can
be proved based on these five axioms; see [3] or [28].

Let's focus our attention on axiom N5, the one axiom that may
not be obvious. Here is what the axiom is saying. Consider a subset
S of N as described in N5. Then 1 belongs to S. Since S containsn+1
whenever it contains n, it follows that § must contain 2 = 1 + 1.
Again, since S contains n+ 1 whenever it contains n, it follows that §
must contain 3 = 2+1. Once again, since § contains n+1 whenever it
contains n, it follows that S must contain 4 = 3+1. We could continue
this monotonous line of reasoning to conclude that S contains any
number in N. Thus it seems reasonable to conclude that $ = N, It is
this reasonable conclusion that is asserted by axiom N5.

Here is another way to view axiom N5. Assume axiom N5 is false.
Then N contains a set § such that

@1les,
(ii) ifne S, thenn+1€S,

and yet S # N. Consider the smallest member of the set {n € N :
n ¢ 8}, call it ny. Since (i) holds, it is clear that ny # 1. So ny must
be a successor to some number in N, namely np — 1. We must have
ng — 1 € § since ny is the smallest member of {n € N : n ¢ §}. By
(ii), the successor of ng — 1, namely ng, must also be in §, which is a
contradiction. This discussion may be plausible, but we emphasize
that we have not proved axiom N5 using the successor notion and
axioms N1 through N4, because we implicitly used two unproven
facts. We assumed that every nonempty subset of N contains a least
element and we assumed that if ny # 1 then ng is the successor to
some number in N.

Axiom NS is the basis of mathematical induction. Let P, P,, P, . ..
be a list of statements or propositions that may or may not be
true. The principle of mathematical induction asserts that all the
statements Py, P;, P;, . .. are true provided '

(1) P, is true,
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(I2) Pp4. is true whenever P, is true.

We will refer to (I;), i.e., the fact that P, is true, as the basis for
induction and we will refer to (I;) as the induction step. For a sound
proofbased on mathematical induction, properties (I,) and (I;) must
both be verified. In practice, (I;) will be easy to check.

Example 1
Provel424---+n= %n(n + 1) for natural numbers n.

Solution
Our nth proposition is

Pp:“l1+2+4---+n=inn+1)"

Thus P, assertsthat 1 = 3-1(1+1), P assertsthat 1 +2 = 1.2(2+1),
P37 assertsthat 142+ --4+37 = %v37(37+1) = 703, etc. In particular,
P, is a true assertion which serves as our basis for induction.

For the induction step, suppose that P, is true. That is, we
suppose

14+2+--+n=3nn+1)

is true. Since we wish to prove P,,, from this, we add n + 1 to both
sides to obtain

1+2+---+n+(n+1)=%n(n+1)+(n‘+l)
=in(n+ D) +2(n+1)]=L(n+1(n+2)
=im+1)((n+1)+1)

Thus P,4+; holds if P, holds. By the principle of mathematical
induction, we conclude that P, is true for all n. [m]

We emphasize that prior to the last sentence of our solution we
did not prove “P,, is true." We merely proved an implication: “if P,
is true, then P, 4, is true.” In a sense we proved an infinite number
of assertions, namely: P, is true; if P, is true then P, is true; if P, is
true then Ps is true; if P; is true then P, is true; etc. Then we applied
mathematical induction to conclude P, is true, P, is true, P; is true,
P, is true, etc. We also confess that formulas like the one just proved
are easier to prove than to derive. It can be a tricky matter to guess
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such a result. Sometimes results such as this are discovered by trial
and error.

Example 2
All numbers of the form 7" — 2" are divisible by 5.

Solution
More precisely, we show that 7" — 2" is divisible by 5 for each n € N.
Our nth proposition is

Pp:*7" — 2" is divisible by 5.

The basis for induction P; is clearly true, since 7! — 2! = 5. For the
induction step, suppose that P, is true. To verify P,;;, we write

7l gt =7l 7. 2" 7. 2" 2. 2" = T[T — 2"+ 5. 2.

Since 7" — 2" is a multiple of 5 by the induction hypothesis, it follows
that 7! — 2"+ js also a multiple of 5. In fact, if 7" — 2" = 5m, then
771 — 2"+ = 5.[7m + 2"]. We have shown that P, implies Py41, S0
the induction step holds. An application of mathematical induction
completes the proof. O

Eiample 3
Show that | sin nx| < n|sinx| for all natural numbers n and all real
numbers x.

Solution
Our nth proposition is

P, ¥ sinnx| < n|sinx| for all real numbers x.”

The basis for induction is again clear. Suppose P, is true. We apply
the addition formula for sine to obtain

| sin(n + 1)x| = | sin(nx + x)| = | sin nxcos x + cos nxsin x|.

Now we apply the Triangle Inequality and properties of the absolute
value [see 3.7 and 3.5] to obtain

| sin(n+1)x| < |sinnx|-|cosx| + |cos nx| - | sinx|.
Since | cosy| < 1 for all y we see that

|sin(n + 1)x| < |sinnx| + | sinx|.
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Now we apply the induction hypothesis P, to obtain

| sin(n + 1)x| < n|sinx| + |sinx| = (n + 1)|sinx|.

Thus P,4; holds. Finally, the result holds for all n by mathematical

induction. a
Exercises
1.1. Prove 17+2%+...+n? = In(n+1)(2n+1) for all natural numbers n.

1.2.
1.3.

1.4.

1.5.
1.6.
1.7.
1.8.

1.9.

1.10.

1.11.

Prove 3 + 11 + - -- + (8n — 5) = 4n? — n for all natural numbers n.

Prove 13+ 23 4.4+ n® = (1 + 2+ - - + n)? for all natural numbers
n.

(a) Guess a formula for 1 + 3 + --- + (2n — 1) by evaluating the
sum forn =1, 2, 3, and 4. [For n = 1, the sum is simply 1.] .

(b) Prove your formula using mathematical induction.
Provel+ § + % +---+ 3 = 2 — & for all natural numbers n.
Prove that (11)" — 4" is divisible by 7 when n is a natural number.
Prove that 7" — 6n — 1 is divisible by 36 for all positive integers n.

The principle of mathematical induction can be extended as fol-
lows. A list Py, Ppy1, ... of propositions is true provided (i) P, is
true, (ii) P,4; is true whenever P, is true and n > m.

(a) Prove that n? > n+1 for all integers n > 2.

(b) Prove that n! > n? for all integers n > 4. [Recall that n! =
n(n—1)---2-1; forexample, 5! =5-4-3-2-1=120]

(a) Decide for which integers the ineﬁuality 2" > n?is true.
(b) Prove your claim in (a) by mathematical induction.

Prove 2n+ 1)+ (2n+3)+ (2n+5) + --- + (4n — 1) = 3n? for all
positive integers n.

For each n € N, let P, denote the assertion ‘n? + 5n + 1 is an even
integer.”

(a) Prove that P,,, is true whenever P, is true.
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(b) For which n is P, actually true? What is the moral of this
exercise?

1.12. For n € N, let n! [read “n factorial”] denote the product1-2-3---n.
Also let 0! = 1 and define

n n!
(k)zm for k—O,l,...,n

The binomial theorem asserts that

(a+b)' = (:)a" + (rll)a""b + (:)a"'2b2 +-
(2 Jar+ (D)o

=a"+na"'b+ In(n—1)a" 2 + .- + nab™! + b".

(a) Verify the binomial theorem for n = 1, 2, and 3.
(b) Show that () + (")) = ("}') fork =1,2,...,n

(c) Prove the binomial theorem using mathematical induction
and part (b).

§2 The Set Q of Rational Numbers

Small children first learn to add and to multiply natural numbers.
After subtraction is introduced, the need to expand the number sys-
tem to include 0 and negative numbers becomes apparent. At this
point the world of numbers is enlarged to include the set Z of all
integers. Thus we have Z = {0,1, -1, 2,-2,...}.

Soon the space Z also becomes inadequate when division is in-
troduced. The solution is to enlarge the world of numbers to include
all fractions. Accordingly, we study the space Q of all rational num-
bers, i.e., numbers of the form 2 where-m,n € Z and n # 0. Note
that Q contains all terminating decimals such as 1.492 = 2, The
connection between decimals and real numbers is dlscussed in10.3
and §16. The space Q is a highly satisfactory algebraic system in
which the basic operations addition, multiplication, subtraction and
division can be fully studied. No system is perfect, however, and Q
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FIGURE 2.1

is inadequate in some ways. In this section we will consider the de-
fects of Q. In the next section we will stress the good features of Q
and then move on to the system of real numbers.

The set Q of rational numbers is a very nice algebraic system
until one tries to solve equations like x2 = 2. It turns out that no
rational number satisfies this equation, and yet there are good rea-
sons to believe that some kind of number satisfies this equation.
Consider, for example, a square with sides having length one; see
Figure 2.1. If d represents the length of the diagonal, then from ge-
ometry we know that 12 + 12 = d?, ie., d* = 2. Apparently there
is a positive length whose square is 2, which we write as +/2. But
~/2 cannot be a rational number, as we will show in Example 2.
Of course, /2 can be approximated by rational numbers. There
are rational numbers whose squares are close to 2; for example,
(1.4142)% = 1.99996164 and (1.4143)? = 2.00024449.

It is evident that there are lots of rational numbers and yet there
are “gaps” in Q. Here is another way to view this situation. Consider
the graph of the polynomial ¥* — 2 in Figure 2.2. Does the graph of
x? — 2 cross the x-axis? We are inclined to say it does, because when
we draw the x-axis we include “all” the points. We allow no “gaps.”
But notice that the graph of x? — 2 slips by all the rational numbers
on the x-axis. The x-axis is our picture of the number line, and the
set of rational numbers again appears to have significant “gaps.”

There are even more exotic numbers such as & and e that are not
rational numbers, but which come up naturally in mathematics. The
number m is basic to the study of circles and spheres, and e arises in
problems of exponential growth.

We return to 4/2. This is an example of what is called an algebraic
number because it satisfies the equation x4 —-2=0.
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FIGURE 2.2

2.1 Definition.
A number is called an algebraic number if it satisfies a polynomial
equation

X" + @p X" -+ arx+ag =0

where the coefficients ay, a,, .. ., a, are integers, a, # 0and n > 1.

Rational numbers are always algebraic numbers. In fact, ifr = &
is a rational number [m,n € Z and n # 0], then it satisfies the
equation nx — m = 0. Numbers defined in terms of v © , v , etc. [or
fractional exponents, if you prefer] and ordinary algebraic operations
on the rational numbers are invariably algebraic numbers.

Example 1

£, 3V2, A7)V3, (2 + 5'3)"2 and ((4 - 2 - 3/%)/7)"/? all represent
algebraic numbers. In fact, & is a solution of 17x — 4 = 0, 3'2
represents a solution of ¥* — 3 = 0, and (17)'/3 represents a so-
lution of ¥ — 17 = 0. The expression a = (2 + 53)'/2 means
a* = 2+ 53 or a? — 2 = 5'3 5o that (a® - 2)® = 5. Therefore
we have a® — 6a* + 12a? — 13 = 0 which shows that a = (2 + 5"/3)!/?
satisfies the polynomial equation x® — 6x* + 12x2 — 13 = 0. Similarly,
the expression b = ((4—2-3"%)/7)/2 leads to 7b* = 4—2-3"2, hence
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2-3Y2 = 4 — 7b?, hence 12 = (4 — 7b*), hence 49b* — 56b* + 4 = 0.
Thus b satisfies the polynomial equation 49x* — 56x* + 4 = 0.

The next theorem may be familiar from elementary algebra. It is
the theorem that justifies the following remarks: the only possible ra-
tional solutions of x* — 7x*> +2x—12 = 0 are £1, +2, 3, +4, +6, +12,
so the only possible (rational) monomial factors of x> — 7x? + 2x — 12
arex—1,x+1,x—2,x+2,x—3,x+3,x—4,x+4,x—6,x+86,
x—12, x+12. We won't pursue these algebraic problems; we merely
made these observations in the hope that they would be familiar.

The next theorem also allows one to prove that algebraic numbers
that do notlook like rational numbers are not rational numbers. Thus
V4 is obviously a rational number, while /2, +/3, /5, etc. turn out
to be nonrational. See the examples following the theorem. Recall
that an integer k is a factor of an integer m or divides m if T is also
an integer. An integer p > 2 is a prime provided the only positive
factors of p are 1 and p. It can be shown that every positive integer
can be written as a product of primes and that this can be done in
only one way, except for the order of the factors.

2.2 Rational Zeros Theorem.
Suppose that ag, ay, . . ., an are integers and that r is a rational number
satisfying the polynomial equation

X" + Ana X"+t ax+ag=0 @

wheren >1,a, # 0and ag # 0. Writer = 5 where p, q are integers
having no common factors and q # 0. Then q divides a, and p divides a,.

In other words, the only rational candidates for solutions of (1)
have the form s where p divides ay and g divides ay,.

Proof
We are given



