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PREFACE

When Tom Casson of WCB/McGraw-Hill contacted me late in 1997 relative to a
second edition of this book, I leaped at the opportunity because immediately fol-
lowing publication of the first edition I realized how much better that edition could
have been. I was not, in late 1997, even discouraged by the daunting schedule Tom
specified. He was hoping that all of the rewriting could be accomplished in a one-
year period. I more or less met his schedule. Now, exhausted by the enterprise, 1
realize the wisdom of that trite phrase, “Look before you leap.”

This book has been substantially revised. A superficial comparison of the two
editions will spot quickly some changes; example problems and certain chapters
now sporting frontispieces being most prominent. The problems were added at the
suggestion of reviewers of the proposed second edition. And the frontispieces were
inserted to provide some appeal in this age of the required “visual impact.” But
there have also been more substantive changes made.

Even though the order of the book remains rather much as it was in the first edi-
tion, almost every chapter has been altered. The most prominent changes are to
Chaps. 9 and 10, which deal with low-temperature fracture and these chapters have
been completely rearranged. Chapter 9 (Fracture Mechanics) now focuses on the
engineering science, and application of, fracture mechanics and auxiliary measures
of fracture resistance such as the impact test. Chapter 10 (Toughening Mechanisms
and the Physics of Fracture) now mainly deals with toughening mechanisms and
fracture mechanisms in flaw-free materials. The sections on toughening mecha-
nisms pay considerably more attention to ceramics and composites than was pro-
vided in the first edition.

Since material has been added to many of the chapters, in an (almost success-
ful) attempt to keep the length of the book within bounds some material has been
deleted. A litany-like listing of the changes made in the remaining chapters follows.
In Chap. 1 (Overview of Mechanical Behavior), I have deleted much of the
“mechanics” contained in the first edition, although discussion of yield criteria and
a brief description of Mohr’s circle are retained. A brief section on fracture tough-
ness measurement has been added. In Chap. 2 (Elastic Behavior), moduli variations
among the material classes are compared and the physical bases for these variations
rationalized. The treatment of polymer elasticity has also been expanded. The
changes made to Chap. 3 (Dislocations) are minor; discussion of twinning has been
expanded and the evolution of dislocation arrangements with plastic strain is now
treated in more detail. Chapter 4 (Plastic Deformation in Single and Polycrystalline
Materials) now considers in more detail the plastic-flow behavior in the different
material classes and compares plastic flow (e.g., wavy vs. planar slip) and work-
hardening characteristics of the fcc and the bec transition metals. The treatment of
particle hardening in Chap. 5 (Strengthening of Crystalline Materials) has been
expanded and is now more up-to-date. Here I have attempted to emphasize the

ix



Preface

similarity in the expressions for strength due to different particle hardening mecha-
nisms and to also indicate their similarity to expressions for the strength arising
from solid-solution hardening. A case study on the development of microalloyed
steels has been added. Off-axis behavior of aligned fiber composites is now treated
in more detail (Chap. 6, Composite Materials), and there is more discussion on
“Modern” composites in this chapter. Chapter 7 (High-Temperature Deformation
of Crystalline Materials) remains much the same. However, a major omission in the
first edition—solute drag creep and the Portevin-LeChatelier effect—are included
in the current edition. And a case study on tungsten light bulb filaments has been
added. Details on polymer molecular architecture (which can be found in elemen-
tary materials science and engineering texts) have been deleted from Chap. 8 (De-
formation of Noncrystalline Materials) and the rheological details of polymer
deformation are not discussed to the same extent they were in the first edition.
However, discussion of silicate and metallic glasses has been slightly expanded.
Chapter 11 (High-Temperature Fracture) has been reduced in length, This was
achieved by eliminating the detailed mathematical description of void growth. At
the time of the first edition, I had thought that this promising approach to prediction
of creep fracture times and strains would soon see engineering implementation.
However, the lack of ancillary physical property data and our inability to realisti-
cally mimic void spacing and the like during creep suggested a more condensed
treatment was in order. Chapter 12 (Fatigue of Engineering Materials) has, I be-
lieve, been improved by including a section treating design against fatigue fracture
in “flawed” and in “flaw-free” materials. This chapter also now considers the rela-
tionships among the endurance limit, the fatigue threshold stress intensity factor,
and material fracture toughness. How these relationships differ in the different ma-
terial classes is also discussed. And a brief description of substructure evolution
(e.g., persistent slip bands) during cyclical straining of metals has been added.
Chapter 13 (Embrittlement) has not been changed much. However, corrosion fa-
tigue in “flawed” and “flaw-free” materials is now treated.

This book, I hope, comprehensively treats the mechanical behavior of materi-
als. The extended treatment is intentional. Individual faculty members deem cer-
tain topics more important than others do. However, (as in many academic matters)
seldom do faculty members agree on what these more important topics are. Thus,
the breadth and depth of this book is an attempt to permit individual instructors to
select those topics they wish to emphasize and to do so at a level they consider ap-
propriate. Because the book is comprehensive, to adequately cover all of the mate-
rial in it at the level at which it is addressed in the text would likely require two full
semesters of a typical three-credit course. Most curricula do not have the luxury of
allocating this amount of time to mechanical behavior of materials. Some experi-
ence indicates the following types of scenarios are possible with the book. A two-
quarter three-credit course or a four-credit semester course could address most of
the topics covered in the book. This would require some selectivity on the part of
the instructor, both with respect to chapters covered and within individual chapters
as well. A logical “division” is that approximately half of the course would consider
deformation and half of it fracture. A four-credit quarter course or a three-credit se-
mester course would call for further culling in individual chapters and perhaps dele-
tion of some material (e.g., Chaps. 13).

1 believe the book can be used in either an undergraduate upper division course



(or courses) or in an introductory graduate course. Of course, the flavor and
emphases would differ between these situations. This, I think, is possible with
this text. In the undergraduate courses I have taught using this book, I have de-
emphasized mathematical developments in an attempt to inculcate in students an
appreciation for the “material” aspects of mechanical behavior. And there are some
topics (e.g., tensile fracture in flaw-free materials is but one of them) that would be
covered in much less depth in an undergraduate course.

As in the first edition, a relatively large number of problems are provided with
each chapter. They range in difficulty; some are straightforward whereas others are,
should we say, “challenging.” And some are not only challenging, but lengthy as
well. These are easily spotted in the sections at chapter ends, and one might ask,
What is their purpose? During the last several years I have departed from the prac-
tice of conventional examinations. Instead, students work in teams (typically two-
student teams for a graduate course and three-student teams for an undergraduate
course) on (usually) four assignments per quarter. Each assignment ordinarily con-
sists of three problems with one or two of these problems being of the “lengthy and
challenging” variety. I can’t say that [ have never pulled my hair out when grading
some of the problem “solutions” handed in by the students. On the other hand, far
more often the solutions presented (even by undergraduate juniors) have been so
well done that I wanted to stand up and cheer.

As always in an undertaking such as this, numerous people have helped. Jeff
Spencer, an undergraduate in our department at Michigan Tech, helped immeasur-
ably with the photography. Emily Grey and Jean Lou Hess of WCB/McGraw-Hill
were persistent, albeit gently demanding at times, “cheerleaders.” Professor A. K.
Mukherjee of the University of California-Davis provided me with some timely
reprints on the topics of creep and superplasticity. He also pointed out a critical
flaw in one of the figures of the first edition. Likewise, Professor Lloyd A. Heldt,
of Michigan Technological University, supplied me with several topical articles on
stress corrosion cracking. I have also used some problems developed by Professor
John A. Wert, a former colleague at the University of Virginia. At this point, I don’t
recall the specific problems that originated with him, but thanks anyway, John.

Thomas H. Courtney
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