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Nature alone knows what she wants.
GOETHE

Preface

Since this book first appeared three years ago, a number of important devel-
opments have taken place calling for various extensions to the text.

Chapter 4 now contains a discussion of the features of the semiclassical
quantization which are relevant for multidimensional chactic systems.

Chapter 3 derives perturbation expansions in terms of Feynman graphs,
whose use is customary in quantum field theory. Correspondence is estab-
lished with Rayleigh-Schrédinger perturbation theory. Graphical expansions
are used in Chapter 5 to extend the Feynman-Kleinert variational approach
into a systematic variational perturbation theory. Analytically inaccessible
path integrals can now be evaluated with arbitrary accuracy. In contrast to
ordinary perturbation expansions which always diverge, the new expansions
are convergent for all coupling strengths, including the strong-coupling limit.

Chapter 19 is new. It deals with relativistic path integrals, which were
previously discussed only briefly in two sections at the end of Chapter 15. As
an application, the path integral of the relativistic hydrogen atom is solved.

Chapter 16 is extended by a theory of particles with fractional statistics
(anyons), from which I develop a theory of polymer entanglement. For this
I introduce nonabelian Chern-Simons fields and show their relationship with
various knot polynomials (Jones, HOMFLY). The successful explanation of
the fractional quantum Hall effect by anyon theory is discussed—also the
failure to explain high-temperature superconductivity via a Chern-Simons
interaction.

Chapter 17 offers a novel variational approach to tunneling amplitudes.
It extends the semiclassical range of validity from high to low barriers. As an
application, I increase the range of validity of the currently used large-order
perturbation theory far into the regime of low orders. This suggests a pos-
sibility of greatly improving existing resummation procedures for divergent
perturbation series of quantum field theories.

The Index now also contains the names of authors cited in the text. This
may help the reader searching for topics associated with these names. Due to
their great number, it was impossible to cite all the authors who have made

vil



viii

important contributions. I apologize to all those who vainly search for their
narmes.

In writing the new sections in Chapters 4 and 16, discussions with
Dr. D. Wintgen and, in particular, Dr. A. Schakel have been extremely use-
ful. T also thank Professors G. Gerlich, P. Hianggi, H. Grabert, M. Roncadelli
as well as Mr. A. Pelster and Mr. R. Karrlein for a number of relevant com-
ments. Printing errors were corrected by my secretary Ms. S. Endrias and
by my editor Ms. Lim Feng Nee of World Scientific.

Many improvements are due to my wife Annemarie.

H. Kleinert
Berlin, December 1994



Preface to the First Edition

These are extended lecture notes of a course on path integrals which I de-
livered at the Freie Universitdt Berlin during winter 1989/1990. My interest
in this subject dates back to 1972 when the late R. P. Feynman drew my
attention to the unsolved path integral of the hydrogen atom. I was then
spending my sabbatical year at Caltech, where Feynman told me during a
discussion how embarrassed he was, not being able to solve the path inte-
gral of this most fundamental quantum system. In fact, this had made him
quit teaching this subject in his course on quantum mechanics as he had
initially done.! Feynman challenged me: “Kleinert, you figured out all that
group-theoretic stuff of the hydrogen atom, why don’t you solve the path in-
tegral!” He was referring to my 1967 Ph.D. thesis? where I had demonstrated
that all dynamical questions on the hydrogen atom could be answered using
only operations within a dynamical group O(4,2). Indeed, in that work, the
four-dimensional oscillator played a crucial role and the missing steps to the
solution of the path integral were later found to be very few. After returning
to Berlin, I forgot about the problem since I was busy applying path integrals
in another context, developing a field-theoretic passage from quark theories
to a collective field theory of hadrons.® Later, I carried these techniques
over into condensed matter (superconductors, superfluid %He) and- nuclear
physics. Path integrals have made it possible to build a unified field theory
of collective phenomena in quite different physical systems.?

1Quoting from the preface of the textbook by R.P. Feynman and A.R. Hibbs, Quan-
tum Mechanics and Path Integrals, McGraw-Hill, New York, 1965: “Qver the succeeding
years, ... Dr. Feynman’s approach to teaching the subject of quantum mechanics evolved
somewhat away from the initial path integral approach.”

2H. Kleinert, Fortschr. Phys. 6, 1, (1968), and Group Dynamics of the Hydrogen
Atom, Lectures presented at the 1967 Boulder Summer School, published in Lectures in
Theoretical Physics, Vol. X B, pp. 427-482, ed. by A.O. Barut and W.E. Brittin, Gordon
and Breach, New York, 1968.

3Gee my 1976 Erice lectures, Hadronization of Quark Theories, published in Under-
standing the Fundamental Constituents of Matter, Plenum press, New York, 1978, p. 289,
ed. by A. Zichichi.

4H. Kleinert, Phys. Lett. B 69, 9 (1977); Fortschr. Phys. 26, 565 (1978); 30, 187, 351
(1982).

ix



The hydrogen problem came up again in 1978 as I was teaching a course on
quantum mechanics. To explain the concept of quantum fluctuations, I gave
an introduction to path integrals. At the same time, a postdoc from Turkey,
I. H. Duru, joined my group as a Humboldt fellow. Since he was familiar with
quantum mechanics, I suggested that we should try solving the path integral
of the hydrogen atom. He quickly acquired the basic techniques, and soon
we found the most important ingredient to the solution: The transformation
of time in the path integral to a new path-dependent pseudotime, combined
with a transformation of the coordinates to “square root coordinates” (to
be explained in Chapters 13 and 14).° These transformations led to the
correct result, however, only due to good fortune. In fact, our procedure was
immediately criticized for its sloppy treatment of the time slicing.® A proper
treatment could, in principle, have rendered unwanted extra terms which
our treatment would have missed. Other authors went through the detailed
time-slicing procedure,” but the correct result emerged only by transforming
the measure of path integration inconsistently. When I calculated the extra
terms according to the standard rules I found them to be zero only in two
space dimensions.® The same treatment in three dimensions gave nonzero
“corrections” which spoiled the beautiful result, leaving me puzzled.

Only recently [ happened to locate the place where the three-dimensional
treatment went wrong. I had just finished a book on the use of gauge fields
in condensed matter physics.® The second volume deals with ensembles of
defects which are defined and classified by means of operational cutting and
pasting procedures on an ideal crystal. Mathematically, these procedures
correspond to nonholonomic mappings. Geometrically, they lead from a flat
space to a space with curvature and torsion. While proofreading that book, it
suddenly occurred to me that the transformation by which the path integral
of the hydrogen atom is solved also produces torsion. Moreover, this happens
only in three dimensions. In two dimensions, where the time-sliced path
integral had been solved without problems, torsion is absent. Thus I realized
that the transformation of the time-sliced measure had a hitherto unknown
sensitivity to torsion.

5L.H. Duru and H. Kleinert, Phys. Lett. B 84, 30 (1979), Fortschr. Phys. 30, 401
(1982).

8G.A. Ringwood and J.T. Devreese, J. Math. Phys. 21, 1390 (1980).

7R. Ho and A. Inomata, Phys. Rev. Lett. {8, 231 (1982); A. Inomata, Phys. Lett. A
87, 387 (1981).

8H. Kleinert, Phys. Lett. B 189, 187 (1987); contains also a criticism of Ref. 7.

9H. Kleinert, Gauge Fields in Condensed Matter, World Scientific, Singapore, 1989,

Vol. I, pp. 1-744, Superflow and Vortex Lines. and Vol. II, pp. 745-1456, Stresses and
Defects.
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It was therefore essential to find a correct path integral for a particle in
a space with curvature and torsion. This was a nontrivial task since the
literature was ambiguous already for a purely curved space, offering sev-
eral prescriptions to choose from. The corresponding equivalent Schrédinger
equations differ by multiples of the curvature scalar.’® The ambiguities are
path integral analogs of the so-called operator-ordering problem in quantum
mechanics. When trying to apply the existing prescriptions to spaces with
torsion, I always ran into a disaster, some even yielding noncovariant an-
swers. So, something had to be wrong with all of them. Guided by the idea
that in spaces with constant curvature the path integral should produce the
same result as an operator quantum mechanics based on a quantization of
angular momenta, I was eventually able to find a consistent quantum equiv-
alence principle for path integrals,'* thus offering also a unique solution to
the operator-ordering problem. This was the key to the leftover problem in
the Coulomb path integral in three dimensions—the proof of the absence of
the extra time slicing contributions presented in Chapter 13.

Chapter 14 solves a variety of one-dimensional systems by the new tech-
niques.

Special emphasis is given in Chapter 8 to instability (path collapse) prob-
lems in the euclidean version of Feynman’s time-sliced path integral. These
arise for actions containing bottomless potentials. A general stabilization
procedure is developed in Chapter 12. It must be applied whenever centrifu-
gal barriers, angular barriers, or Coulomb potentials are present.'?

Another project suggested to me by Feynman—the improvement of a
variational approach to path integrals explained in his book on statistical
mechanics'®>—found a faster solution. We started work during my sabbatical
stay at the University of California at Santa Barbara in 1982. After a few
meetings and discussions, the problem was solved and the preprint drafted.
Unfortunately, Feynman’s iliness prevented him from reading the final proof
of the paper. He was able to do this only three years later when I came to
the University of California at San Diego for another sabbatical leave. Only
then could the paper be submitted.*

Due to recent interest in lattice theories, I have found it useful to exhibit
the solution of several path integrals for a finite number of time slices, without

108 §. DeWitt, Rev. Mod. Phys. 29, 337 (1957); K.S. Cheng, J. Math. Phys. 13,
1723 (1972), H. Kamo and T. Kawai, Prog. Theor. Phys. 50, 680, (1973); T. Kawai,
Found. Phys. 5, 143 (1975), H. Dekker, Physica A 103, 586 (1980), G.M. Gavazzi, Nuovo
Cimento 101 A, 241 (1981); M.S. Marinov, Physics Reports 60, 1 (1980).

1H . Kleinert, Mod. Phys. Lett. A §, 2329 (1989); Phys. Lett. B 236, 315 (1990).

12Y. Kleinert, Phys. Lett. B 224, 313 (1989).

13R P. Feynman, Statistical Mechanics, Benjamin, Reading, 1972, Section 3.5.

4R P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080, (1986).
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going immediately to the continuum limit. This should help identify typical
lattice effects seen in the Monte Carlo simulation data of various systems.

The path integral description of polymers is introduced in Chapter 15
where stiffness as well as the famous excluded-volume problem are discussed.
Parallels are drawn to path integrals of relativistic particle orbits. This chap-
ter is a preparation for ongoing research in the theory of fluctuating surfaces
with extrinsic curvature stiffness, and their application to world sheets of
strings in particle physics.!®> I have also introduced the field-theoretic de-
scription of a polymer to account for its increasing relevance to the under-
standing of various phase transitions driven by fluctuating line-like excita-
tions (vortex lines in superfluids and superconductors, defect lines in crystals
and liquid crystals).’® Special attention has been devoted in Chapter 16 to
simple topological questions of polymers and particle orbits, the latter aris-
ing by the presence of magnetic flux tubes (Aharonov-Bohm effect). Their
relationship to Bose and Fermi statistics of particles is pointed out and the
recently popular topic of fractional statistics is introduced. A survey of en-
tanglement phenomena of single orbits and pairs of them (ribbons) is given
and their application to biophysics is indicated.

Finally, Chapter 18 contains a brief introduction to the path integral
approach of nonequilibrium quantum-statistical mechanics, deriving from it
the standard Langevin and Fokker-Planck equations.

I want to thank several students in my class, my graduate students, and
my postdocs for many useful discussions. In particular, T. Eris, F. Langham-
mer, B. Meller, I. Mustapic, J. Nieschk, T. Sauer, L. Semig, J. Zaun, and
Drs. G. Germaén, D. Johnston, and C. Holm, have all contributed with con-
structive criticism. Dr. U. Eckern from Karisruhe University clarified some
points in the path integral derivation of the Fokker-Planck equation in Chap-
ter 18. Useful comments are due to Dr. P.A. Horvathy and to my colleague
Prof. W. Theis. Their careful reading uncovered many shortcomings in the
first draft of the manuscript. Special thanks go to Dr. W. Janke with whom
I had a fertile collaboration over the years and many discussions on various
aspects of path integration.

Thanks go also to my secretary S. Endrias for her help in preparing the
manuscript in JATEX, thus making it readable at an early stage, and to U.
Grimm for drawing the figures.

154 M. Polyakov, Nucl. Phys. B 268, 406 (1986), H. Kleinert, Phys. Lett. B 174, 335
(1986).

16Gee Ref. 9.
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Finally, and most importantly, I am grateful to my wife Dr. Anne-
marie Kleinert for her inexhaustable patience and constant encouragement.

H. Kleinert
Berlin, January 1990
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