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Chapter 2 Determination of Minor Metallic Elements
in the Water Environment

James F. Cosgrove and Donato J. Bracco
GTE LABORATORIES. INC.
BAYSIDE. NEW YORK
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I. Introduction

It is the purpose of this chapter to provide the reader with ai fhsight
into a number of the analytical techniques available for the determination
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1316 JAMES F. COSGROVE AND DONATO J. BRACCO

of minor constituents in samples. For purposes of this discussion a minor
constituent is considered as any element present in the concentration
range between about 100 parts per million and a few per cent. Almost
without exception, any analytical technique applicable to the determina-
tion of trace constituents will also be applicable to minor element analysis.
In addition, trace elements in relatively large samples often can be raised
to the minor level by chemical treatment or concentration. Techniques
for performing these operations are adequately covered elsewhere in this
handbook.

It is obvious that most analytical techniques would therefore be
applicable in the concentration range of interest. It would not be possible
to cover all technigues within the limits of a single chapter. Consequently,
the authors have selected those methods which they feel would be most
useful in the determination of minor elements in water samples and which
are not covered elsewhere in the book. For this latter reason electro-
chemical techniques and fluorimetric and spectrophotometric methods
are not treated.

The methods to be discussed include flame emission and absorption
spectroscopy. atomic fluorescence spectroscopy, emission and X-ray
spectroscopy. and activation analysis. Extensive reviews of the applica-
tions of each of these methods to water analysis can be found in the
annual reviews of the Journal of the Water Pollution Control Federation
and in the biannual reviews on water analysis which appear in odd years
in Analytical Chemistry. Since these reviews are extensive and up to date,
no attempt is made to duplicate them here. Rather, the general principles
of each method are presented along with a discussion of their utility and
range of application to allow those not imtimately connected with
their use to make a judicious selection of the method best suited to a
particular problem.

II. Flame Spectrometric Methuods

A. Introduction

Ali flame spectrometric methods involve aspiration of a solution into
a flame where the solvent evaporates leaving solute particles. Vaporiza-
tion and decomposition of the solute particles result in the production of
atoms. A portion of these atoms may be raised to an excited state by the
thermal energy of the flame. Measurement of the radiation emitted as
these atoms return to the ground state is the basis of flame emission
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spectroscopy. The ability of the unexcited or ground state atoms in the
flame to absorb radiation of a characteristic wavelength is the basis of
atomic absorption spectroscopy. The third member of the flame spectro-
scopy family, atomic fluorescence spectroscopy, involves the measure-
ment of the fluorescence of the atoms excited by a high intensity light
source.

Atomic absorption has probably been more widely accepted in a shorter
time than any analytical technique ever developed. Although the basic
principles of flame emission were first employed about 1860, it wasn’t
until some 85 years later that flame spectroscopy was extensively used in
the analytical community. On the other hand, the first publication on
atomic absorption, by Walsh in 1955(7), was followed within a few years
with the availability of commercial instruments and widespread use of
the technique.

The 13th edition of Standurd Methods for the Examination of Water
and Wastewater lists atomic absorption methods for aluminum, barium,
beryllium, cadmium, chromium, copper, iron, lead, magnesium, mangan-
ese, silver, and zinc(2). On the other hand, the 12th edition makes no
mention of the technique (3).

Atomic fluorescence spectroscopy was first discussed in 1964 (4). 1t
has not been as widely accepted as atomic absorption, but therc has been
considerable discussion about the relative merits of the two methods.
Winefordner et al. have presented a critical comparison of the two
methods with flame emission(3).

B. Flame Emission

1. GENERAL PRINCIPLES

Flame emission spectroscopy is a technique for determining elemental
concentrations based on the measurement of the intensity of the emission
spectra of the elements produced by flame excitation. Detailed accounts
of the fundamentals of the technique can be found in any number of books
on the subject published through the years(6-10).

In general, the flame has to be able to decompose the compounds of
interest into gaseous molecules or atoms and excite these decomposition
products to emit light. Because of the lower energy of the flame the
emission spectra produced are less complex than those produced by arc
or spark excitation. Emission spectra resulting from excited atoms
consist of lines, while molecules, whose energy characteristics are more
complex, result in band emission. The measured intensity of any element
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is dependent upon the number of emitting atoms in the flame per unit time
and generally will be found to increase linearly with concentration.

The major portion of the atoms in the flame remain in the ground state
and are not excited. The relationship between the number of atoms
in the excited level, N;, to the number in the ground state, N,, is given by

N;= No(Py/P,) exp (— E;/kT) (1)

where P; and P, are the statistical weights for the excited state and ground
state, respectively, E; is the excitation energy of the excited state, A
is the Boltzmann constant, and 7 is the temperature. It can be shown, for
example, that for the sodium resonance line at 589.6 nm the value of
N;/N, is 9.86 X 107% at 2000°K and 4.44 X 10~* at 4000°K (/7). Thus, the
number of atoms in the excited state is extremely temperature dependent.

Efforts to increase the sensitivity and scope of application of flame
emission have resulted in a great deal of study of various types of flames,
and many different combustible gases have been used(/2, /3). Although
flame temperature is of importance in determining the excitability of the
elements, it is not the only factor. The oxidation or reduction status of
the flame also plays a role, as was indicated by the work which led to the
significant increase in detection sensitivity for elements such as niobium,
vanadium, titanium, molybdenum, tungsten, and rhenium by the use of a
reducing oxyacetylene flame(/4, /5). It must be remembered that the
hottest available flame is not necessarily the best choice for a particular
analytical problem The choice must depend on the propertles of the
chemical species involved.

2. INSTRUMENTATION

Flame spectrometers are simple instruments and are of two basic
designs, single- or double-beam instruments. The single-beam instrument
contains only one set of optics with a single light path and one detector.
Light emitted in the flame is collected and focused through optical filters
or a monochromator onto a detector. Double-beam instruments possess
a second light path with a double set of optics and two detectors. The two
detectors are in simultaneous operation with the signal from one opposing
the signal from the other. The double-beam system provides for the
measurement of the intensity of an internal standard element added to the
test solution. One set of optics transmits only the characteristic wave-
length of the element to be analyzed and the other transmits the character-
istic wavelength of the internal standard. A ratio of the two detectors is
developed electrically and this information is used to determine concen-
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tration. The internal standard method effectively compensates for

instrumental errors and for some interferences.
The flame photometer then must have the ability to vaporize the

sample, to select the proper wavelength, and to measure and record the
intensity of the emitted light.

a. Sample Vaporization

The reproducible introduction of the sample into the flame is one of the
most critical steps in flame emission spectroscopy. Reliable analytical
results can be obtained only if a uniform means of sample injection is used.

Two types of atomizers are normally used to deliver the sample
solution to the flame. In the drainage-type atomizer the sample solution
is reduced to a mist by a blast of air or oxygen which also carries the
smaller droplets from the mist to the flame. The larger droplets are carried
to waste or in some instances returned to the original solution. This is a
relatively inefficient atomizer in that only a small fraction of the sample
solution is actually delivered to the flame.

The more practical unit is the total consumption type, in which the
atomizer is combined in one unit with the burner. A fine stream of the
sample solution is drawn up a small capillary by the venturi effect
created by the oxygen or compressed air used to support combustion.
The entire liquid is sprayed directly into the flame, permitting the intro-
duction of a large amount of sample per unit time with a corresponding
increase in sensitivity.

Although the flame is the most commonly used means of exciting the
elements for this method of analysis, a number of nonflame sources have
been proposed and investigated(/3). However, for water samples the
flame to date remains the most convenient excitation source.

b. Optical Systems

The function of the optical system is to collect the light from the flame,
to isolate the wavelength of interest from all other emission in the flame
and the flame background, and to focus the light onto the detector. The
wavelength selection can be accomplished by the use of absorption or
interference filters or grating or prism monochromators. The most
satisfactory resolation is achieved with the monochromator, which also

provides the greatest versatility.

¢. Detection Systems

Any photosensitive device may be used as a detector provided it has
a response in the wavelength region of interest and possesses the required
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sensitivity. Photographic plates, barrier-layer cells, and multiplier photo-
tubes have been used. The latter device is the prefe: “ed radiation detector
due to its high sensitivity.

3. SENSITIVITY

The limit of sensitivity of flame emission is usu. 'v defined as that
concentration of an element in solution which produce . signal 1% above
the flame background. The practical sensitivity is a unction of many
variables, such as the type and temperature of the flame, the atomizer-
burner efficiency, the efficiency of the optical system, and the sensitivity
of the detector. There are many compilations of concentrational sensitivi-
ties for the method (5, 6, /6-18) and further repetition is not necessary.

It is obvious from a study of these collections that some 60-70 elements
have the potential of being detected in aqueous solutions when present
at the parts per million or lower level. Consequently, flame emission
spectroscopy has wide potential use for the determination of minor
constituents in water samples.

4, INTERFERENCES

Flame photometry can be subject to a number of interferences or factors
which can affect the accuracy of the method.

Interference can be caused by the superposition of a continuum or a
band spectrum over the line spectra of interest or by the superposition
of emission lines from two elements. This type of interference can be
minimized by the use of an optical system of high resolution.

Interference can also be caused by the flame background, which would
include contributions from the flame and sample matrix. Flame back-
ground measurements constitute an important correction factor. In the
analysis of routine samples the most convenient means of evaluating the
correction is by the use of a synthetic blank containing all constituents
except the element to be determined.

The emission intensity of an element in the flame depends on the
number of neutral atoms which are raised to an excited state. Therefore,
the flame which has sufficient energy to ionize the metals will in effect
reduce the number of neutral atoms available for excitation and con-
sequently reduce the emission intensity. This effect becomes more
pronounced in hotter flames. Hence an increase in flame temperature is
not necessarily followed by a corresponding increase in emission inten-
sity. The ionization effect on the element of interest can be reduced by the
addition of a more readily ionized element to the solution.

Another form of interference can occur due to the presence of other



